

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

cmake-cache

[image: Build Status] [https://travis-ci.org/tay10r/cmake-cache]
[image: Build status] [https://ci.appveyor.com/project/tay10r/cmake-cache]

This library is intended for reading and writing CMake cache files.

It can also be used for syntax highlighting.

Usage

The easiest way of using the API is by use of the Engine class.

Here’s an example.

void RunExampleFunction() {

 using namespace cmake::cache;

 auto engine = Engine::Create();

 engine->OpenCache();

 auto var = engine->Find("CMAKE_CXX_COMPILER");

 if (var) {
 DoSomethingWithVariable(*var);
 }

 engine->SaveCache();
}

You can also take a look at the get-value-of example program.

Running the example just involves specifying the names of the variables to get the value of.

./get-value-of CMAKE_CXX_COMPILER

Building

To build this project, you’ll need CMake installed.

On Ubuntu, you can use this command:

sudo apt install cmake
or sudo apt-get install cmake

Once CMake is installed, you can do this to build the project.

mkdir build
cd build
cmake ..
cmake --build .

To run the tests, use the ctest command.

ctest --verbose

How to become a contributor and submit your own code

Contributor License Agreements

We’d love to accept your patches! Before we can take them, we
have to jump a couple of legal hurdles.

Please fill out either the individual or corporate Contributor License Agreement
(CLA).

	If you are an individual writing original source code and you’re sure you
own the intellectual property, then you’ll need to sign an
individual CLA [https://developers.google.com/open-source/cla/individual].

	If you work for a company that wants to allow you to contribute your work,
then you’ll need to sign a
corporate CLA [https://developers.google.com/open-source/cla/corporate].

Follow either of the two links above to access the appropriate CLA and
instructions for how to sign and return it. Once we receive it, we’ll be able to
accept your pull requests.

Are you a Googler?

If you are a Googler, you can either create an internal change or work on GitHub directly.

Contributing A Patch

	Submit an issue describing your proposed change to the
issue tracker [https://github.com/google/googletest].

	Please don’t mix more than one logical change per submittal,
because it makes the history hard to follow. If you want to make a
change that doesn’t have a corresponding issue in the issue
tracker, please create one.

	Also, coordinate with team members that are listed on the issue in
question. This ensures that work isn’t being duplicated and
communicating your plan early also generally leads to better
patches.

	If your proposed change is accepted, and you haven’t already done so, sign a
Contributor License Agreement (see details above).

	Fork the desired repo, develop and test your code changes.

	Ensure that your code adheres to the existing style in the sample to which
you are contributing.

	Ensure that your code has an appropriate set of unit tests which all pass.

	Submit a pull request.

The Google Test and Google Mock Communities

The Google Test community exists primarily through the
discussion group [http://groups.google.com/group/googletestframework]
and the GitHub repository.
Likewise, the Google Mock community exists primarily through their own
discussion group [http://groups.google.com/group/googlemock].
You are definitely encouraged to contribute to the
discussion and you can also help us to keep the effectiveness of the
group high by following and promoting the guidelines listed here.

Please Be Friendly

Showing courtesy and respect to others is a vital part of the Google
culture, and we strongly encourage everyone participating in Google
Test development to join us in accepting nothing less. Of course,
being courteous is not the same as failing to constructively disagree
with each other, but it does mean that we should be respectful of each
other when enumerating the 42 technical reasons that a particular
proposal may not be the best choice. There’s never a reason to be
antagonistic or dismissive toward anyone who is sincerely trying to
contribute to a discussion.

Sure, C++ testing is serious business and all that, but it’s also
a lot of fun. Let’s keep it that way. Let’s strive to be one of the
friendliest communities in all of open source.

As always, discuss Google Test in the official GoogleTest discussion group.
You don’t have to actually submit code in order to sign up. Your participation
itself is a valuable contribution.

Style

To keep the source consistent, readable, diffable and easy to merge,
we use a fairly rigid coding style, as defined by the google-styleguide [https://github.com/google/styleguide] project. All patches will be expected
to conform to the style outlined here [https://google.github.io/styleguide/cppguide.html].

Requirements for Contributors

If you plan to contribute a patch, you need to build Google Test,
Google Mock, and their own tests from a git checkout, which has
further requirements:

	Python [https://www.python.org/] v2.3 or newer (for running some of
the tests and re-generating certain source files from templates)

	CMake [https://cmake.org/] v2.6.4 or newer

	GNU Build System [https://en.wikipedia.org/wiki/GNU_Build_System]
including automake (>= 1.9), autoconf (>= 2.59), and
libtool / libtoolize.

Developing Google Test

This section discusses how to make your own changes to Google Test.

Testing Google Test Itself

To make sure your changes work as intended and don’t break existing
functionality, you’ll want to compile and run Google Test’s own tests.
For that you can use CMake:

mkdir mybuild
cd mybuild
cmake -Dgtest_build_tests=ON ${GTEST_DIR}

Make sure you have Python installed, as some of Google Test’s tests
are written in Python. If the cmake command complains about not being
able to find Python (Could NOT find PythonInterp (missing: PYTHON_EXECUTABLE)), try telling it explicitly where your Python
executable can be found:

cmake -DPYTHON_EXECUTABLE=path/to/python -Dgtest_build_tests=ON ${GTEST_DIR}

Next, you can build Google Test and all of its own tests. On *nix,
this is usually done by ‘make’. To run the tests, do

make test

All tests should pass.

Regenerating Source Files

Some of Google Test’s source files are generated from templates (not
in the C++ sense) using a script.
For example, the
file include/gtest/internal/gtest-type-util.h.pump is used to generate
gtest-type-util.h in the same directory.

You don’t need to worry about regenerating the source files
unless you need to modify them. You would then modify the
corresponding .pump files and run the ‘pump.py’
generator script. See the Pump Manual.

Developing Google Mock

This section discusses how to make your own changes to Google Mock.

Testing Google Mock Itself

To make sure your changes work as intended and don’t break existing
functionality, you’ll want to compile and run Google Test’s own tests.
For that you’ll need Autotools. First, make sure you have followed
the instructions above to configure Google Mock.
Then, create a build output directory and enter it. Next,

${GMOCK_DIR}/configure # try --help for more info

Once you have successfully configured Google Mock, the build steps are
standard for GNU-style OSS packages.

make # Standard makefile following GNU conventions
make check # Builds and runs all tests - all should pass.

Note that when building your project against Google Mock, you are building
against Google Test as well. There is no need to configure Google Test
separately.

Google Test

[image: Build Status] [https://travis-ci.org/google/googletest]
[image: Build status] [https://ci.appveyor.com/project/GoogleTestAppVeyor/googletest/branch/master]

Future Plans:

	1.8.x Release - the 1.8.x will be the last release that works with pre-C++11 compilers. The 1.8.x will not accept any requests for any new features and any bugfix requests will only be accepted if proven “critical”

	Post 1.8.x - work to improve/cleanup/pay technical debt. When this work is completed there will be a 1.9.x tagged release

	Post 1.9.x googletest will follow Abseil Live at Head philosophy [https://abseil.io/about/philosophy]

Welcome to Google Test, Google’s C++ test framework!

This repository is a merger of the formerly separate GoogleTest and
GoogleMock projects. These were so closely related that it makes sense to
maintain and release them together.

Please see the project page above for more information as well as the
mailing list for questions, discussions, and development. There is
also an IRC channel on OFTC [https://webchat.oftc.net/] (irc.oftc.net) #gtest available. Please
join us!

Getting started information for Google Test is available in the
Google Test Primer documentation.

Google Mock is an extension to Google Test for writing and using C++ mock
classes. See the separate Google Mock documentation.

More detailed documentation for googletest (including build instructions) are
in its interior googletest/README.md file.

Features

	An xUnit [https://en.wikipedia.org/wiki/XUnit] test framework.

	Test discovery.

	A rich set of assertions.

	User-defined assertions.

	Death tests.

	Fatal and non-fatal failures.

	Value-parameterized tests.

	Type-parameterized tests.

	Various options for running the tests.

	XML test report generation.

Platforms

Google test has been used on a variety of platforms:

	Linux

	Mac OS X

	Windows

	Cygwin

	MinGW

	Windows Mobile

	Symbian

Who Is Using Google Test?

In addition to many internal projects at Google, Google Test is also used by
the following notable projects:

	The Chromium projects [http://www.chromium.org/] (behind the Chrome
browser and Chrome OS).

	The LLVM [http://llvm.org/] compiler.

	Protocol Buffers [https://github.com/google/protobuf], Google’s data
interchange format.

	The OpenCV [http://opencv.org/] computer vision library.

	tiny-dnn [https://github.com/tiny-dnn/tiny-dnn]: header only, dependency-free deep learning framework in C++11.

Related Open Source Projects

GTest Runner [https://github.com/nholthaus/gtest-runner] is a Qt5 based automated test-runner and Graphical User Interface with powerful features for Windows and Linux platforms.

Google Test UI [https://github.com/ospector/gtest-gbar] is test runner that runs
your test binary, allows you to track its progress via a progress bar, and
displays a list of test failures. Clicking on one shows failure text. Google
Test UI is written in C#.

GTest TAP Listener [https://github.com/kinow/gtest-tap-listener] is an event
listener for Google Test that implements the
TAP protocol [https://en.wikipedia.org/wiki/Test_Anything_Protocol] for test
result output. If your test runner understands TAP, you may find it useful.

gtest-parallel [https://github.com/google/gtest-parallel] is a test runner that
runs tests from your binary in parallel to provide significant speed-up.

GoogleTest Adapter [https://marketplace.visualstudio.com/items?itemName=DavidSchuldenfrei.gtest-adapter] is a VS Code extension allowing to view Google Tests in a tree view, and run/debug your tests.

Requirements

Google Test is designed to have fairly minimal requirements to build
and use with your projects, but there are some. Currently, we support
Linux, Windows, Mac OS X, and Cygwin. We will also make our best
effort to support other platforms (e.g. Solaris, AIX, and z/OS).
However, since core members of the Google Test project have no access
to these platforms, Google Test may have outstanding issues there. If
you notice any problems on your platform, please notify
googletestframework@googlegroups.com [https://groups.google.com/forum/#!forum/googletestframework]. Patches for fixing them are
even more welcome!

Linux Requirements

These are the base requirements to build and use Google Test from a source
package (as described below):

	GNU-compatible Make or gmake

	POSIX-standard shell

	POSIX(-2) Regular Expressions (regex.h)

	A C++98-standard-compliant compiler

Windows Requirements

	Microsoft Visual C++ 2015 or newer

Cygwin Requirements

	Cygwin v1.5.25-14 or newer

Mac OS X Requirements

	Mac OS X v10.4 Tiger or newer

	Xcode Developer Tools

Contributing change

Please read the CONTRIBUTING.md for details on
how to contribute to this project.

Happy testing!

Google Mock

The Google C++ mocking framework.

Overview

Google’s framework for writing and using C++ mock classes.
It can help you derive better designs of your system and write better tests.

It is inspired by:

	jMock [http://www.jmock.org/],

	EasyMock [http://www.easymock.org/], and

	Hamcrest [http://code.google.com/p/hamcrest/],

and designed with C++’s specifics in mind.

Google mock:

	lets you create mock classes trivially using simple macros.

	supports a rich set of matchers and actions.

	handles unordered, partially ordered, or completely ordered expectations.

	is extensible by users.

We hope you find it useful!

Features

	Provides a declarative syntax for defining mocks.

	Can easily define partial (hybrid) mocks, which are a cross of real
and mock objects.

	Handles functions of arbitrary types and overloaded functions.

	Comes with a rich set of matchers for validating function arguments.

	Uses an intuitive syntax for controlling the behavior of a mock.

	Does automatic verification of expectations (no record-and-replay needed).

	Allows arbitrary (partial) ordering constraints on
function calls to be expressed,.

	Lets an user extend it by defining new matchers and actions.

	Does not use exceptions.

	Is easy to learn and use.

Please see the project page above for more information as well as the
mailing list for questions, discussions, and development. There is
also an IRC channel on OFTC (irc.oftc.net) #gtest available. Please
join us!

Please note that code under scripts/generator is
from cppclean [http://code.google.com/p/cppclean/] and released under
the Apache License, which is different from Google Mock’s license.

Getting Started

If you are new to the project, we suggest that you read the user
documentation in the following order:

	Learn the basics of
Google Test, if you choose to use Google Mock with it (recommended).

	Read Google Mock for Dummies.

	Read the instructions below on how to build Google Mock.

You can also watch Zhanyong’s talk [http://www.youtube.com/watch?v=sYpCyLI47rM] on Google Mock’s usage and implementation.

Once you understand the basics, check out the rest of the docs:

	CheatSheet - all the commonly used stuff
at a glance.

	CookBook - recipes for getting things done,
including advanced techniques.

If you need help, please check the
KnownIssues and
FrequentlyAskedQuestions before
posting a question on the
discussion group [http://groups.google.com/group/googlemock].

Using Google Mock Without Google Test

Google Mock is not a testing framework itself. Instead, it needs a
testing framework for writing tests. Google Mock works seamlessly
with Google Test [https://github.com/google/googletest], but
you can also use it with any C++ testing framework.

Requirements for End Users

Google Mock is implemented on top of Google Test [http://github.com/google/googletest/], and depends on it.
You must use the bundled version of Google Test when using Google Mock.

You can also easily configure Google Mock to work with another testing
framework, although it will still need Google Test. Please read
“Using_Google_Mock_with_Any_Testing_Framework”
for instructions.

Google Mock depends on advanced C++ features and thus requires a more
modern compiler. The following are needed to use Google Mock:

Linux Requirements

	GNU-compatible Make or “gmake”

	POSIX-standard shell

	POSIX(-2) Regular Expressions (regex.h)

	C++98-standard-compliant compiler (e.g. GCC 3.4 or newer)

Windows Requirements

	Microsoft Visual C++ 8.0 SP1 or newer

Mac OS X Requirements

	Mac OS X 10.4 Tiger or newer

	Developer Tools Installed

Requirements for Contributors

We welcome patches. If you plan to contribute a patch, you need to
build Google Mock and its tests, which has further requirements:

	Automake version 1.9 or newer

	Autoconf version 2.59 or newer

	Libtool / Libtoolize

	Python version 2.3 or newer (for running some of the tests and
re-generating certain source files from templates)

Building Google Mock

Using CMake

If you have CMake available, it is recommended that you follow the
build instructions
as described for Google Test.

If are using Google Mock with an
existing CMake project, the section
Incorporating Into An Existing CMake Project
may be of particular interest.
To make it work for Google Mock you will need to change

target_link_libraries(example gtest_main)

to

target_link_libraries(example gmock_main)

This works because gmock_main library is compiled with Google Test.

Preparing to Build (Unix only)

If you are using a Unix system and plan to use the GNU Autotools build
system to build Google Mock (described below), you’ll need to
configure it now.

To prepare the Autotools build system:

cd googlemock
autoreconf -fvi

To build Google Mock and your tests that use it, you need to tell your
build system where to find its headers and source files. The exact
way to do it depends on which build system you use, and is usually
straightforward.

This section shows how you can integrate Google Mock into your
existing build system.

Suppose you put Google Mock in directory ${GMOCK_DIR} and Google Test
in ${GTEST_DIR} (the latter is ${GMOCK_DIR}/gtest by default). To
build Google Mock, create a library build target (or a project as
called by Visual Studio and Xcode) to compile

${GTEST_DIR}/src/gtest-all.cc and ${GMOCK_DIR}/src/gmock-all.cc

with

${GTEST_DIR}/include and ${GMOCK_DIR}/include

in the system header search path, and

${GTEST_DIR} and ${GMOCK_DIR}

in the normal header search path. Assuming a Linux-like system and gcc,
something like the following will do:

g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
 -isystem ${GMOCK_DIR}/include -I${GMOCK_DIR} \
 -pthread -c ${GTEST_DIR}/src/gtest-all.cc
g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
 -isystem ${GMOCK_DIR}/include -I${GMOCK_DIR} \
 -pthread -c ${GMOCK_DIR}/src/gmock-all.cc
ar -rv libgmock.a gtest-all.o gmock-all.o

(We need -pthread as Google Test and Google Mock use threads.)

Next, you should compile your test source file with
${GTEST_DIR}/include and ${GMOCK_DIR}/include in the header search
path, and link it with gmock and any other necessary libraries:

g++ -isystem ${GTEST_DIR}/include -isystem ${GMOCK_DIR}/include \
 -pthread path/to/your_test.cc libgmock.a -o your_test

As an example, the make/ directory contains a Makefile that you can
use to build Google Mock on systems where GNU make is available
(e.g. Linux, Mac OS X, and Cygwin). It doesn’t try to build Google
Mock’s own tests. Instead, it just builds the Google Mock library and
a sample test. You can use it as a starting point for your own build
script.

If the default settings are correct for your environment, the
following commands should succeed:

cd ${GMOCK_DIR}/make
make
./gmock_test

If you see errors, try to tweak the contents of
make/Makefile to make them go away.

Windows

The msvc/2005 directory contains VC++ 2005 projects and the msvc/2010
directory contains VC++ 2010 projects for building Google Mock and
selected tests.

Change to the appropriate directory and run “msbuild gmock.sln” to
build the library and tests (or open the gmock.sln in the MSVC IDE).
If you want to create your own project to use with Google Mock, you’ll
have to configure it to use the gmock_config propety sheet. For that:

	Open the Property Manager window (View | Other Windows | Property Manager)

	Right-click on your project and select “Add Existing Property Sheet…”

	Navigate to gmock_config.vsprops or gmock_config.props and select it.

	In Project Properties | Configuration Properties | General | Additional
Include Directories, type

 Defining a Mock Class

Defining a Mock Class

Mocking a Normal Class

Given

class Foo {
 ...
 virtual ~Foo();
 virtual int GetSize() const = 0;
 virtual string Describe(const char* name) = 0;
 virtual string Describe(int type) = 0;
 virtual bool Process(Bar elem, int count) = 0;
};

(note that ~Foo() must be virtual) we can define its mock as

#include "gmock/gmock.h"

class MockFoo : public Foo {
 MOCK_CONST_METHOD0(GetSize, int());
 MOCK_METHOD1(Describe, string(const char* name));
 MOCK_METHOD1(Describe, string(int type));
 MOCK_METHOD2(Process, bool(Bar elem, int count));
};

To create a “nice” mock object which ignores all uninteresting calls,
or a “strict” mock object, which treats them as failures:

NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.

Mocking a Class Template

To mock

template <typename Elem>
class StackInterface {
 public:
 ...
 virtual ~StackInterface();
 virtual int GetSize() const = 0;
 virtual void Push(const Elem& x) = 0;
};

(note that ~StackInterface() must be virtual) just append _T to the MOCK_* macros:

template <typename Elem>
class MockStack : public StackInterface<Elem> {
 public:
 ...
 MOCK_CONST_METHOD0_T(GetSize, int());
 MOCK_METHOD1_T(Push, void(const Elem& x));
};

Specifying Calling Conventions for Mock Functions

If your mock function doesn’t use the default calling convention, you
can specify it by appending _WITH_CALLTYPE to any of the macros
described in the previous two sections and supplying the calling
convention as the first argument to the macro. For example,

 MOCK_METHOD1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
 MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));

where STDMETHODCALLTYPE is defined by <objbase.h> on Windows.

Using Mocks in Tests

The typical flow is:

	Import the Google Mock names you need to use. All Google Mock names are in the testing namespace unless they are macros or otherwise noted.

	Create the mock objects.

	Optionally, set the default actions of the mock objects.

	Set your expectations on the mock objects (How will they be called? What wil they do?).

	Exercise code that uses the mock objects; if necessary, check the result using Google Test assertions.

	When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.

Here is an example:

using ::testing::Return; // #1

TEST(BarTest, DoesThis) {
 MockFoo foo; // #2

 ON_CALL(foo, GetSize()) // #3
 .WillByDefault(Return(1));
 // ... other default actions ...

 EXPECT_CALL(foo, Describe(5)) // #4
 .Times(3)
 .WillRepeatedly(Return("Category 5"));
 // ... other expectations ...

 EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
} // #6

Setting Default Actions

Google Mock has a built-in default action for any function that
returns void, bool, a numeric value, or a pointer.

To customize the default action for functions with return type T globally:

using ::testing::DefaultValue;

// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();

To customize the default action for a particular method, use ON_CALL():

ON_CALL(mock_object, method(matchers))
 .With(multi_argument_matcher) ?
 .WillByDefault(action);

Setting Expectations

EXPECT_CALL() sets expectations on a mock method (How will it be
called? What will it do?):

EXPECT_CALL(mock_object, method(matchers))
 .With(multi_argument_matcher) ?
 .Times(cardinality) ?
 .InSequence(sequences) *
 .After(expectations) *
 .WillOnce(action) *
 .WillRepeatedly(action) ?
 .RetiresOnSaturation(); ?

If Times() is omitted, the cardinality is assumed to be:

	Times(1) when there is neither WillOnce() nor WillRepeatedly();

	Times(n) when there are n WillOnce()s but no WillRepeatedly(), where n >= 1; or

	Times(AtLeast(n)) when there are n WillOnce()s and a WillRepeatedly(), where n >= 0.

A method with no EXPECT_CALL() is free to be invoked any number of times, and the default action will be taken each time.

Matchers

A matcher matches a single argument. You can use it inside
ON_CALL() or EXPECT_CALL(), or use it to validate a value
directly:

EXPECT_THAT(value, matcher)	Asserts that value matches matcher.
:——————————	:—————————————-
ASSERT_THAT(value, matcher)	The same as EXPECT_THAT(value, matcher), except that it generates a fatal failure.

Built-in matchers (where argument is the function argument) are
divided into several categories:

Wildcard

_	argument can be any value of the correct type.
:–	:———————————————–
A<type>() or An<type>()	argument can be any value of type type.

Generic Comparison

Eq(value) or value	argument == value
:———————	:——————
Ge(value)	argument >= value
Gt(value)	argument > value
Le(value)	argument <= value
Lt(value)	argument < value
Ne(value)	argument != value
IsNull()	argument is a NULL pointer (raw or smart).
NotNull()	argument is a non-null pointer (raw or smart).
VariantWith<T>(m)	argument is variant<> that holds the alternative of
type T with a value matching m.	
Ref(variable)	argument is a reference to variable.
TypedEq<type>(value)	argument has type type and is equal to value. You may need to use this instead of Eq(value) when the mock function is overloaded.

Except Ref(), these matchers make a copy of value in case it’s
modified or destructed later. If the compiler complains that value
doesn’t have a public copy constructor, try wrap it in ByRef(),
e.g. Eq(ByRef(non_copyable_value)). If you do that, make sure
non_copyable_value is not changed afterwards, or the meaning of your
matcher will be changed.

Floating-Point Matchers

DoubleEq(a_double)	argument is a double value approximately equal to a_double, treating two NaNs as unequal.
:——————-	:———————————————————————————————-
FloatEq(a_float)	argument is a float value approximately equal to a_float, treating two NaNs as unequal.
NanSensitiveDoubleEq(a_double)	argument is a double value approximately equal to a_double, treating two NaNs as equal.
NanSensitiveFloatEq(a_float)	argument is a float value approximately equal to a_float, treating two NaNs as equal.

The above matchers use ULP-based comparison (the same as used in
Google Test). They
automatically pick a reasonable error bound based on the absolute
value of the expected value. DoubleEq() and FloatEq() conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The NanSensitive* version instead treats two NaNs as
equal, which is often what a user wants.

DoubleNear(a_double, max_abs_error)	argument is a double value close to a_double (absolute error <= max_abs_error), treating two NaNs as unequal.
:————————————	:——————————————————————————————————————–
FloatNear(a_float, max_abs_error)	argument is a float value close to a_float (absolute error <= max_abs_error), treating two NaNs as unequal.
NanSensitiveDoubleNear(a_double, max_abs_error)	argument is a double value close to a_double (absolute error <= max_abs_error), treating two NaNs as equal.
NanSensitiveFloatNear(a_float, max_abs_error)	argument is a float value close to a_float (absolute error <= max_abs_error), treating two NaNs as equal.

String Matchers

The argument can be either a C string or a C++ string object:

ContainsRegex(string)	argument matches the given regular expression.
:———————-	:———————————————–
EndsWith(suffix)	argument ends with string suffix.
HasSubstr(string)	argument contains string as a sub-string.
MatchesRegex(string)	argument matches the given regular expression with the match starting at the first character and ending at the last character.
StartsWith(prefix)	argument starts with string prefix.
StrCaseEq(string)	argument is equal to string, ignoring case.
StrCaseNe(string)	argument is not equal to string, ignoring case.
StrEq(string)	argument is equal to string.
StrNe(string)	argument is not equal to string.

ContainsRegex() and MatchesRegex() use the regular expression
syntax defined
here.
StrCaseEq(), StrCaseNe(), StrEq(), and StrNe() work for wide
strings as well.

Container Matchers

Most STL-style containers support ==, so you can use
Eq(expected_container) or simply expected_container to match a
container exactly. If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:

ContainerEq(container)	The same as Eq(container) except that the failure message also includes which elements are in one container but not the other.
:————————-	:———
Contains(e)	argument contains an element that matches e, which can be either a value or a matcher.
Each(e)	argument is a container where every element matches e, which can be either a value or a matcher.
ElementsAre(e0, e1, ..., en)	argument has n + 1 elements, where the i-th element matches ei, which can be a value or a matcher. 0 to 10 arguments are allowed.
ElementsAreArray({ e0, e1, ..., en }), ElementsAreArray(array), or ElementsAreArray(array, count)	The same as ElementsAre() except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array.
IsEmpty()	argument is an empty container (container.empty()).
Pointwise(m, container)	argument contains the same number of elements as in container, and for all i, (the i-th element in argument, the i-th element in container) match m, which is a matcher on 2-tuples. E.g. Pointwise(Le(), upper_bounds) verifies that each element in argument doesn’t exceed the corresponding element in upper_bounds. See more detail below.
SizeIs(m)	argument is a container whose size matches m. E.g. SizeIs(2) or SizeIs(Lt(2)).
UnorderedElementsAre(e0, e1, ..., en)	argument has n + 1 elements, and under some permutation each element matches an ei (for a different i), which can be a value or a matcher. 0 to 10 arguments are allowed.
UnorderedElementsAreArray({ e0, e1, ..., en }), UnorderedElementsAreArray(array), or UnorderedElementsAreArray(array, count)	The same as UnorderedElementsAre() except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array.
WhenSorted(m)	When argument is sorted using the < operator, it matches container matcher m. E.g. WhenSorted(ElementsAre(1, 2, 3)) verifies that argument contains elements 1, 2, and 3, ignoring order.
WhenSortedBy(comparator, m)	The same as WhenSorted(m), except that the given comparator instead of < is used to sort argument. E.g. WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1)).

Notes:

	These matchers can also match:

	a native array passed by reference (e.g. in Foo(const int (&a)[5])), and

	an array passed as a pointer and a count (e.g. in Bar(const T* buffer, int len) – see Multi-argument Matchers).

	The array being matched may be multi-dimensional (i.e. its elements can be arrays).

	m in Pointwise(m, ...) should be a matcher for ::testing::tuple<T, U> where T and U are the element type of the actual container and the expected container, respectively. For example, to compare two Foo containers where Foo doesn’t support operator== but has an Equals() method, one might write:

using ::testing::get;
MATCHER(FooEq, "") {
 return get<0>(arg).Equals(get<1>(arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));

Member Matchers

Field(&class::field, m)	argument.field (or argument->field when argument is a plain pointer) matches matcher m, where argument is an object of type class.
:————————	:———
Key(e)	argument.first matches e, which can be either a value or a matcher. E.g. Contains(Key(Le(5))) can verify that a map contains a key <= 5.
Pair(m1, m2)	argument is an std::pair whose first field matches m1 and second field matches m2.
Property(&class::property, m)	argument.property() (or argument->property() when argument is a plain pointer) matches matcher m, where argument is an object of type class.

Matching the Result of a Function or Functor

|ResultOf(f, m)|f(argument) matches matcher m, where f is a function or functor.|
|:—————|:———————————————————————|

Pointer Matchers

Pointee(m)	argument (either a smart pointer or a raw pointer) points to a value that matches matcher m.
:———–	:———————————————————————————————–
WhenDynamicCastTo<T>(m)	when argument is passed through dynamic_cast<T>(), it matches matcher m.

Multiargument Matchers

Technically, all matchers match a single value. A “multi-argument”
matcher is just one that matches a tuple. The following matchers can
be used to match a tuple (x, y):

Eq()	x == y
:—–	:——-
Ge()	x >= y
Gt()	x > y
Le()	x <= y
Lt()	x < y
Ne()	x != y

You can use the following selectors to pick a subset of the arguments
(or reorder them) to participate in the matching:

AllArgs(m)	Equivalent to m. Useful as syntactic sugar in .With(AllArgs(m)).
:———–	:——————————————————————-
Args<N1, N2, ..., Nk>(m)	The tuple of the k selected (using 0-based indices) arguments matches m, e.g. Args<1, 2>(Eq()).

Composite Matchers

You can make a matcher from one or more other matchers:

AllOf(m1, m2, ..., mn)	argument matches all of the matchers m1 to mn.
:———————–	:—————————————————
AnyOf(m1, m2, ..., mn)	argument matches at least one of the matchers m1 to mn.
Not(m)	argument doesn’t match matcher m.

Adapters for Matchers

MatcherCast<T>(m)	casts matcher m to type Matcher<T>.
:——————	:————————————–
SafeMatcherCast<T>(m)	safely casts matcher m to type Matcher<T>.
Truly(predicate)	predicate(argument) returns something considered by C++ to be true, where predicate is a function or functor.

Matchers as Predicates

Matches(m)(value)	evaluates to true if value matches m. You can use Matches(m) alone as a unary functor.
:——————	:———————————————————————————————
ExplainMatchResult(m, value, result_listener)	evaluates to true if value matches m, explaining the result to result_listener.
Value(value, m)	evaluates to true if value matches m.

Defining Matchers

MATCHER(IsEven, "") { return (arg % 2) == 0; }	Defines a matcher IsEven() to match an even number.
:————————————————-	:——————————————————
MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }	Defines a macher IsDivisibleBy(n) to match a number divisible by n.
MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }	Defines a matcher IsBetween(a, b) to match a value in the range [a, b].

Notes:

	The MATCHER* macros cannot be used inside a function or class.

	The matcher body must be purely functional (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).

	You can use PrintToString(x) to convert a value x of any type to a string.

Matchers as Test Assertions

ASSERT_THAT(expression, m)	Generates a fatal failure if the value of expression doesn’t match matcher m.
:—————————	:———-
EXPECT_THAT(expression, m)	Generates a non-fatal failure if the value of expression doesn’t match matcher m.

Actions

Actions specify what a mock function should do when invoked.

Returning a Value

Return()	Return from a void mock function.
:———	:———————————-
Return(value)	Return value. If the type of value is different to the mock function’s return type, value is converted to the latter type at the time the expectation is set, not when the action is executed.
ReturnArg<N>()	Return the N-th (0-based) argument.
ReturnNew<T>(a1, ..., ak)	Return new T(a1, ..., ak); a different object is created each time.
ReturnNull()	Return a null pointer.
ReturnPointee(ptr)	Return the value pointed to by ptr.
ReturnRef(variable)	Return a reference to variable.
ReturnRefOfCopy(value)	Return a reference to a copy of value; the copy lives as long as the action.

Side Effects

Assign(&variable, value)	Assign value to variable.
:————————-	:————————–
DeleteArg<N>()	Delete the N-th (0-based) argument, which must be a pointer.
SaveArg<N>(pointer)	Save the N-th (0-based) argument to *pointer.
SaveArgPointee<N>(pointer)	Save the value pointed to by the N-th (0-based) argument to *pointer.
SetArgReferee<N>(value)	Assign value to the variable referenced by the N-th (0-based) argument.
SetArgPointee<N>(value)	Assign value to the variable pointed by the N-th (0-based) argument.
SetArgumentPointee<N>(value)	Same as SetArgPointee<N>(value). Deprecated. Will be removed in v1.7.0.
SetArrayArgument<N>(first, last)	Copies the elements in source range [first, last) to the array pointed to by the N-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.
SetErrnoAndReturn(error, value)	Set errno to error and return value.
Throw(exception)	Throws the given exception, which can be any copyable value. Available since v1.1.0.

Using a Function or a Functor as an Action

Invoke(f)	Invoke f with the arguments passed to the mock function, where f can be a global/static function or a functor.
:———-	:—————————————————————————————————————–
Invoke(object_pointer, &class::method)	Invoke the {method on the object with the arguments passed to the mock function.
InvokeWithoutArgs(f)	Invoke f, which can be a global/static function or a functor. f must take no arguments.
InvokeWithoutArgs(object_pointer, &class::method)	Invoke the method on the object, which takes no arguments.
InvokeArgument<N>(arg1, arg2, ..., argk)	Invoke the mock function’s N-th (0-based) argument, which must be a function or a functor, with the k arguments.

The return value of the invoked function is used as the return value
of the action.

When defining a function or functor to be used with Invoke*(), you can declare any unused parameters as Unused:

 double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
 ...
 EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));

In InvokeArgument<N>(...), if an argument needs to be passed by reference, wrap it inside ByRef(). For example,

 InvokeArgument<2>(5, string("Hi"), ByRef(foo))

calls the mock function’s #2 argument, passing to it 5 and string("Hi") by value, and foo by reference.

Default Action

|DoDefault()|Do the default action (specified by ON_CALL() or the built-in one).|
|:————|:——————————————————————–|

Note: due to technical reasons, DoDefault() cannot be used inside a composite action - trying to do so will result in a run-time error.

Composite Actions

DoAll(a1, a2, ..., an)	Do all actions a1 to an and return the result of an in each invocation. The first n - 1 sub-actions must return void.
:———————–	:———–
IgnoreResult(a)	Perform action a and ignore its result. a must not return void.
WithArg<N>(a)	Pass the N-th (0-based) argument of the mock function to action a and perform it.
WithArgs<N1, N2, ..., Nk>(a)	Pass the selected (0-based) arguments of the mock function to action a and perform it.
WithoutArgs(a)	Perform action a without any arguments.

Defining Actions

ACTION(Sum) { return arg0 + arg1; }	Defines an action Sum() to return the sum of the mock function’s argument #0 and #1.
:————————————–	:—————————————————————————————
ACTION_P(Plus, n) { return arg0 + n; }	Defines an action Plus(n) to return the sum of the mock function’s argument #0 and n.
ACTION_Pk(Foo, p1, ..., pk) { statements; }	Defines a parameterized action Foo(p1, ..., pk) to execute the given statements.

The ACTION* macros cannot be used inside a function or class.

Cardinalities

These are used in Times() to specify how many times a mock function will be called:

AnyNumber()	The function can be called any number of times.
:————	:———————————————-
AtLeast(n)	The call is expected at least n times.
AtMost(n)	The call is expected at most n times.
Between(m, n)	The call is expected between m and n (inclusive) times.
Exactly(n) or n	The call is expected exactly n times. In particular, the call should never happen when n is 0.

Expectation Order

By default, the expectations can be matched in any order. If some
or all expectations must be matched in a given order, there are two
ways to specify it. They can be used either independently or
together.

The After Clause

using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
 .After(init_x, init_y);

says that Bar() can be called only after both InitX() and
InitY() have been called.

If you don’t know how many pre-requisites an expectation has when you
write it, you can use an ExpectationSet to collect them:

using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
 all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
 .After(all_inits);

says that Bar() can be called only after all elements have been
initialized (but we don’t care about which elements get initialized
before the others).

Modifying an ExpectationSet after using it in an .After() doesn’t
affect the meaning of the .After().

Sequences

When you have a long chain of sequential expectations, it’s easier to
specify the order using sequences, which don’t require you to given
each expectation in the chain a different name. All expected
calls

 Creating Mock Classes

 You can find recipes for using Google Mock here. If you haven’t yet,
please read the ForDummies document first to make sure you understand
the basics.

Note: Google Mock lives in the testing name space. For
readability, it is recommended to write using ::testing::Foo; once in
your file before using the name Foo defined by Google Mock. We omit
such using statements in this page for brevity, but you should do it
in your own code.

Creating Mock Classes

Mocking Private or Protected Methods

You must always put a mock method definition (MOCK_METHOD*) in a
public: section of the mock class, regardless of the method being
mocked being public, protected, or private in the base class.
This allows ON_CALL and EXPECT_CALL to reference the mock function
from outside of the mock class. (Yes, C++ allows a subclass to specify
a different access level than the base class on a virtual function.)
Example:

class Foo {
 public:
 ...
 virtual bool Transform(Gadget* g) = 0;

 protected:
 virtual void Resume();

 private:
 virtual int GetTimeOut();
};

class MockFoo : public Foo {
 public:
 ...
 MOCK_METHOD1(Transform, bool(Gadget* g));

 // The following must be in the public section, even though the
 // methods are protected or private in the base class.
 MOCK_METHOD0(Resume, void());
 MOCK_METHOD0(GetTimeOut, int());
};

Mocking Overloaded Methods

You can mock overloaded functions as usual. No special attention is required:

class Foo {
 ...

 // Must be virtual as we'll inherit from Foo.
 virtual ~Foo();

 // Overloaded on the types and/or numbers of arguments.
 virtual int Add(Element x);
 virtual int Add(int times, Element x);

 // Overloaded on the const-ness of this object.
 virtual Bar& GetBar();
 virtual const Bar& GetBar() const;
};

class MockFoo : public Foo {
 ...
 MOCK_METHOD1(Add, int(Element x));
 MOCK_METHOD2(Add, int(int times, Element x);

 MOCK_METHOD0(GetBar, Bar&());
 MOCK_CONST_METHOD0(GetBar, const Bar&());
};

Note: if you don’t mock all versions of the overloaded method, the
compiler will give you a warning about some methods in the base class
being hidden. To fix that, use using to bring them in scope:

class MockFoo : public Foo {
 ...
 using Foo::Add;
 MOCK_METHOD1(Add, int(Element x));
 // We don't want to mock int Add(int times, Element x);
 ...
};

Mocking Class Templates

To mock a class template, append _T to the MOCK_* macros:

template <typename Elem>
class StackInterface {
 ...
 // Must be virtual as we'll inherit from StackInterface.
 virtual ~StackInterface();

 virtual int GetSize() const = 0;
 virtual void Push(const Elem& x) = 0;
};

template <typename Elem>
class MockStack : public StackInterface<Elem> {
 ...
 MOCK_CONST_METHOD0_T(GetSize, int());
 MOCK_METHOD1_T(Push, void(const Elem& x));
};

Mocking Nonvirtual Methods

Google Mock can mock non-virtual functions to be used in what we call hi-perf
dependency injection.

In this case, instead of sharing a common base class with the real
class, your mock class will be unrelated to the real class, but
contain methods with the same signatures. The syntax for mocking
non-virtual methods is the same as mocking virtual methods:

// A simple packet stream class. None of its members is virtual.
class ConcretePacketStream {
 public:
 void AppendPacket(Packet* new_packet);
 const Packet* GetPacket(size_t packet_number) const;
 size_t NumberOfPackets() const;
 ...
};

// A mock packet stream class. It inherits from no other, but defines
// GetPacket() and NumberOfPackets().
class MockPacketStream {
 public:
 MOCK_CONST_METHOD1(GetPacket, const Packet*(size_t packet_number));
 MOCK_CONST_METHOD0(NumberOfPackets, size_t());
 ...
};

Note that the mock class doesn’t define AppendPacket(), unlike the
real class. That’s fine as long as the test doesn’t need to call it.

Next, you need a way to say that you want to use
ConcretePacketStream in production code and to use MockPacketStream
in tests. Since the functions are not virtual and the two classes are
unrelated, you must specify your choice at compile time (as opposed
to run time).

One way to do it is to templatize your code that needs to use a packet
stream. More specifically, you will give your code a template type
argument for the type of the packet stream. In production, you will
instantiate your template with ConcretePacketStream as the type
argument. In tests, you will instantiate the same template with
MockPacketStream. For example, you may write:

template <class PacketStream>
void CreateConnection(PacketStream* stream) { ... }

template <class PacketStream>
class PacketReader {
 public:
 void ReadPackets(PacketStream* stream, size_t packet_num);
};

Then you can use CreateConnection<ConcretePacketStream>() and
PacketReader<ConcretePacketStream> in production code, and use
CreateConnection<MockPacketStream>() and
PacketReader<MockPacketStream> in tests.

 MockPacketStream mock_stream;
 EXPECT_CALL(mock_stream, ...)...;
 .. set more expectations on mock_stream ...
 PacketReader<MockPacketStream> reader(&mock_stream);
 ... exercise reader ...

Mocking Free Functions

It’s possible to use Google Mock to mock a free function (i.e. a
C-style function or a static method). You just need to rewrite your
code to use an interface (abstract class).

Instead of calling a free function (say, OpenFile) directly,
introduce an interface for it and have a concrete subclass that calls
the free function:

class FileInterface {
 public:
 ...
 virtual bool Open(const char* path, const char* mode) = 0;
};

class File : public FileInterface {
 public:
 ...
 virtual bool Open(const char* path, const char* mode) {
 return OpenFile(path, mode);
 }
};

Your code should talk to FileInterface to open a file. Now it’s
easy to mock out the function.

This may seem much hassle, but in practice you often have multiple
related functions that you can put in the same interface, so the
per-function syntactic overhead will be much lower.

If you are concerned about the performance overhead incurred by
virtual functions, and profiling confirms your concern, you can
combine this with the recipe for mocking non-virtual methods.

The Nice, the Strict, and the Naggy

If a mock method has no EXPECT_CALL spec but is called, Google Mock
will print a warning about the “uninteresting call”. The rationale is:

	New methods may be added to an interface after a test is written. We shouldn’t fail a test just because a method it doesn’t know about is called.

	However, this may also mean there’s a bug in the test, so Google Mock shouldn’t be silent either. If the user believes these calls are harmless, they can add an EXPECT_CALL() to suppress the warning.

However, sometimes you may want to suppress all “uninteresting call”
warnings, while sometimes you may want the opposite, i.e. to treat all
of them as errors. Google Mock lets you make the decision on a
per-mock-object basis.

Suppose your test uses a mock class MockFoo:

TEST(...) {
 MockFoo mock_foo;
 EXPECT_CALL(mock_foo, DoThis());
 ... code that uses mock_foo ...
}

If a method of mock_foo other than DoThis() is called, it will be
reported by Google Mock as a warning. However, if you rewrite your
test to use NiceMock<MockFoo> instead, the warning will be gone,
resulting in a cleaner test output:

using ::testing::NiceMock;

TEST(...) {
 NiceMock<MockFoo> mock_foo;
 EXPECT_CALL(mock_foo, DoThis());
 ... code that uses mock_foo ...
}

NiceMock<MockFoo> is a subclass of MockFoo, so it can be used
wherever MockFoo is accepted.

It also works if MockFoo’s constructor takes some arguments, as
NiceMock<MockFoo> “inherits” MockFoo’s constructors:

using ::testing::NiceMock;

TEST(...) {
 NiceMock<MockFoo> mock_foo(5, "hi"); // Calls MockFoo(5, "hi").
 EXPECT_CALL(mock_foo, DoThis());
 ... code that uses mock_foo ...
}

The usage of StrictMock is similar, except that it makes all
uninteresting calls failures:

using ::testing::StrictMock;

TEST(...) {
 StrictMock<MockFoo> mock_foo;
 EXPECT_CALL(mock_foo, DoThis());
 ... code that uses mock_foo ...

 // The test will fail if a method of mock_foo other than DoThis()
 // is called.
}

There are some caveats though (I don’t like them just as much as the
next guy, but sadly they are side effects of C++’s limitations):

	NiceMock<MockFoo> and StrictMock<MockFoo> only work for mock methods defined using the MOCK_METHOD* family of macros directly in the MockFoo class. If a mock method is defined in a base class of MockFoo, the “nice” or “strict” modifier may not affect it, depending on the compiler. In particular, nesting NiceMock and StrictMock (e.g. NiceMock<StrictMock<MockFoo> >) is not supported.

	The constructors of the base mock (MockFoo) cannot have arguments passed by non-const reference, which happens to be banned by the Google C++ style guide [https://google.github.io/styleguide/cppguide.html].

	During the constructor or destructor of MockFoo, the mock object is not nice or strict. This may cause surprises if the constructor or destructor calls a mock method on this object. (This behavior, however, is consistent with C++’s general rule: if a constructor or destructor calls a virtual method of this object, that method is treated as non-virtual. In other words, to the base class’s constructor or destructor, this object behaves like an instance of the base class, not the derived class. This rule is required for safety. Otherwise a base constructor may use members of a derived class before they are initialized, or a base destructor may use members of a derived class after they have been destroyed.)

Finally, you should be very cautious about when to use naggy or strict mocks, as they tend to make tests more brittle and harder to maintain. When you refactor your code without changing its externally visible behavior, ideally you should’t need to update any tests. If your code interacts with a naggy mock, however, you may start to get spammed with warnings as the result of your change. Worse, if your code interacts with a strict mock, your tests may start to fail and you’ll be forced to fix them. Our general recommendation is to use nice mocks (not yet the default) most of the time, use naggy mocks (the current default) when developing or debugging tests, and use strict mocks only as the last resort.

Simplifying the Interface without Breaking Existing Code

Sometimes a method has a long list of arguments that is mostly
uninteresting. For example,

class LogSink {
 public:
 ...
 virtual void send(LogSeverity severity, const char* full_filename,
 const char* base_filename, int line,
 const struct tm* tm_time,
 const char* message, size_t message_len) = 0;
};

This method’s argument list is lengthy and hard to work with (let’s
say that the message argument is not even 0-terminated). If we mock
it as is, using the mock will be awkward. If, however, we try to
simplify this interface, we’ll need to fix all clients depending on
it, which is often infeasible.

The trick is to re-dispatch the method in the mock class:

class ScopedMockLog : public LogSink {
 public:
 ...
 virtual void send(LogSeverity severity, const char* full_filename,
 const char* base_filename, int line, const tm* tm_time,
 const char* message, size_t message_len) {
 // We are only interested in the log severity, full file name, and
 // log message.
 Log(severity, full_filename, std::string(message, message_len));
 }

 // Implements the mock method:
 //
 // void Log(LogSeverity severity,
 // const string& file_path,
 // const string& message);
 MOCK_METHOD3(Log, void(LogSeverity severity, const string& file_path,
 const string& message));
};

By defining a new mock method with a trimmed argument list, we make
the mock class much more user-friendly.

Alternative to Mocking Concrete Classes

Often you may find yourself using classes that don’t implement
interfaces. In order to test your code that uses such a class (let’s
call it Concrete), you may be tempted to make the methods of
Concrete virtual and then mock it.

Try not to do that.

Making a non-virtual function virtual is a big decision. It creates an
extension point where subclasses can tweak your class’ behavior. This
weakens your control on the class because now it’s harder to maintain
the class’ invariants. You should make a function virtual only when
there is a valid reason for a subclass to override it.

Mocking concrete classes directly is problematic as it creates a tight
coupling between the class and the tests - any small change in the
class may invalidate your tests and make test maintenance a pain.

To avoid such problems, many programmers have been practicing “coding
to interfaces”: instead of talking to the Concrete class, your code
would define an interface and talk to it. Then you implement that
interface as an adaptor on top of Concrete. In tests, you can easily
mock that interface to observe how your code is doing.

This technique incurs some overhead:

	You pay the cost of virtual function calls (usually not a problem).

	There is more abstraction for the programmers to learn.

However, it can also bring significant benefits in addition to better
testability:

	Concrete’s API may not fit your problem domain very well, as you may not be the only client it tries to serve. By designing your own interface, you have a chance to tailor it to your need - you may add higher-level functionalities, rename stuff, etc instead of just trimming the class. This allows you to write your code (user of the interface) in a more natural way, which means it will be more readable, more maintainable, and you’ll be more productive.

	If Concrete’s implementation ever has to change, you don’t have to rewrite everywhere it is used. Instead, you can absorb the change in your implementation of the interface, and your other code and tests will be insulated from this change.

Some people worry that if everyone is practicing this technique, they
will end up writing lots of redundant code. This concern is totally
understandable. However, there are two reasons why it may not be the
case:

	Different projects may need to use Concrete in different ways, so the best interfaces for them will be different. Therefore, each of them will have its own domain-specific interface on top of Concrete, and they will not be the same code.

	If enough projects want to use the same interface, they can always share it, just like they have been sharing Concrete. You can check in the interface and the adaptor somewhere near Concrete (perhaps in a contrib sub-directory) and let many projects use it.

You need to weigh the pros and cons carefully for your particular
problem, but I’d like to assure you that the Java community has been
practicing this for a long time and it’s a proven effective technique
applicable in a wide variety of situations. :-)

Delegating Calls to a Fake

Some times you have a non-trivial fake implementation of an
interface. For example:

class Foo {
 public:
 virtual ~Foo() {}
 virtual char DoThis(int n) = 0;
 virtual void DoThat(const char* s, int* p) = 0;
};

class FakeFoo : public Foo {
 public:
 virtual char DoThis(int n) {
 return (n > 0) ? '+' :
 (n < 0) ? '-' : '0';
 }

 virtual void DoThat(const char* s, int* p) {
 *p = strlen(s);
 }
};

Now you want to mock this interface such that you can set expectations
on it. However, you also want to use FakeFoo for the default
behavior, as duplicating it in the mock object is, well, a lot of
work.

When you define the mock class using Google Mock, you can have it
delegate its default action to a fake class you already have, using
this pattern:

using ::testing::_;
using ::testing::Invoke;

class MockFoo : public Foo {
 public:
 // Normal mock method definitions using Google Mock.
 MOCK_METHOD1(DoThis, char(int n));
 MOCK_METHOD2(DoThat, void(const char* s, int* p));

 // Delegates the default actions of the methods to a FakeFoo object.
 // This must be called *before* the custom ON_CALL() statements.
 void DelegateToFake() {
 ON_CALL(*this, DoThis(_))
 .WillByDefault(Invoke(&fake_, &FakeFoo::DoThis));
 ON_CALL(*this, DoThat(_, _))
 .WillByDefault(Invoke(&fake_, &FakeFoo::DoThat));
 }
 private:
 FakeFoo fake_; // Keeps an instance of the fake in the mock.
};

With that, you can use MockFoo in your tests as usual. Just remember
that if you don’t explicitly set an action in an ON_CALL() or
EXPECT_CALL(), the fake will be called upon to do it:

using ::testing::_;

TEST(AbcTest, Xyz) {
 MockFoo foo;
 foo.DelegateToFake(); // Enables the fake for delegation.

 // Put your ON_CALL(foo, ...)s here, if any.

 // No action specified, meaning to use the default action.
 EXPECT_CALL(foo, DoThis(5));
 EXPECT_CALL(foo, DoThat(_, _));

 int n = 0;
 EXPECT_EQ('+', foo.DoThis(5)); // FakeFoo::DoThis() is invoked.
 foo.DoThat("Hi", &n); // FakeFoo::DoThat() is invoked.
 EXPECT_EQ(2, n);
}

Some tips:

	If you want, you can still override the default action by providing your own ON_CALL() or using .WillOnce() / .WillRepeatedly() in EXPECT_CALL().

	In DelegateToFake(), you only need to delegate the methods whose fake implementation you intend to use.

	The general technique discussed here works for overloaded methods, but you’ll need to tell the compiler which version you mean. To disambiguate a mock function (the one you specify inside the parentheses of ON_CALL()), see the “Selecting Between Overloaded Functions” section on this page; to disambiguate a fake function (the one you place inside Invoke()), use a static_cast to specify the function’s type. For instance, if class Foo has methods char DoThis(int n) and bool DoThis(double x) const, and you want to invoke the latter, you need to write Invoke(&fake_, static_cast<bool (FakeFoo::*)(double) const>(&FakeFoo::DoThis)) instead of Invoke(&fake_, &FakeFoo::DoThis) (The strange-looking thing inside the angled brackets of static_cast is the type of a function pointer to the second DoThis() method.).

	Having to mix a mock and a fake is often a sign of something gone wrong. Perhaps you haven’t got used to the interaction-based way of testing yet. Or perhaps your interface is taking on too many roles and should be split up. Therefore, don’t abuse this. We would only recommend to do it as an intermediate step when you are refactoring your code.

Regarding the tip on mixing a mock and a fake, here’s an example on
why it may be a bad sign: Suppose you have a class System for
low-level system operations. In particular, it does file and I/O
operations. And suppose you want to test how your code uses System
to do I/O, and you just want the file operations to work normally. If
you mock out the entire System class, you’ll have to provide a fake
implementation for the file operation part, which suggests that
System is taking on too many roles.

Instead, you can define a FileOps interface and an IOOps interface
and split System’s functionalities into the two. Then you can mock
IOOps without mocking FileOps.

Delegating Calls to a Real Object

When using testing doubles (mocks, fakes, stubs, and etc), sometimes
their behaviors will differ from those of the real objects. This
difference could be either intentional (as in simulating an error such
that you can test the error handling code) or unintentional. If your
mocks have different behaviors than the real objects by mistake, you
could end up with code that passes the tests but fails in production.

You can use the delegating-to-real technique to ensure that your
mock has the same behavior as the real object while retaining the
ability to validate calls. This technique is very similar to the
delegating-to-fake technique, the difference being that we use a real
object instead of a fake. Here’s an example:

using ::testing::_;
using ::testing::AtLeast;
using ::testing::Invoke;

class MockFoo : public Foo {
 public:
 MockFoo() {
 // By default, all calls are delegated to the real object.
 ON_CALL(*this, DoThis())
 .WillByDefault(Invoke(&real_, &Foo::DoThis));
 ON_CALL(*this, DoThat(_))
 .WillByDefault(Invoke(&real_, &Foo::DoThat));
 ...
 }
 MOCK_METHOD0(DoThis, ...);
 MOCK_METHOD1(DoThat, ...);
 ...
 private:
 Foo real_;
};
...

 MockFoo mock;

 EXPECT_CALL(mock, DoThis())
 .Times(3);
 EXPECT_CALL(mock, DoThat("Hi"))
 .Times(AtLeast(1));
 ... use mock in test ...

With this, Google Mock will verify that your code made the right calls
(with the right arguments, in the right order, called the right number
of times, etc), and a real object will answer the calls (so the
behavior will be the same as in production). This gives you the best
of both worlds.

Delegating Calls to a Parent Class

Ideally, you should code to interfaces, whose methods are all pure
virtual. In reality, sometimes you do need to mock a virtual method
that is not pure (i.e, it already has an implementation). For example:

class Foo {
 public:
 virtual ~Foo();

 virtual void Pure(int n) = 0;
 virtual int Concrete(const char* str) { ... }
};

class MockFoo : public Foo {
 public:
 // Mocking a pure method.
 MOCK_METHOD1(Pure, void(int n));
 // Mocking a concrete method. Foo::Concrete() is shadowed.
 MOCK_METHOD1(Concrete, int(const char* str));
};

Sometimes you may want to call Foo::Concrete() instead of
MockFoo::Concrete(). Perhaps you want to do it as part of a stub
action, or perhaps your test doesn’t need to mock Concrete() at all
(but it would be oh-so painful to have to define a new mock class
whenever you don’t need to mock one of its methods).

The trick is to leave a back door in your mock class for accessing the
real methods in the base class:

class MockFoo : public Foo {
 public:
 // Mocking a pure method.
 MOCK_METHOD1(Pure, void(int n));
 // Mocking a concrete method. Foo::Concrete() is shadowed.
 MOCK_METHOD1(Concrete, int(const char* str));

 // Use this to call Concrete() defined in Foo.
 int FooConcrete(const char* str) { return Foo::Concrete(str); }
};

Now, you can call Foo::Concrete() inside an action by:

using ::testing::_;
using ::testing::Invoke;
...
 EXPECT_CALL(foo, Concrete(_))
 .WillOnce(Invoke(&foo, &MockFoo::FooConcrete));

or tell the mock object that you don’t want to mock Concrete():

using ::testing::Invoke;
...
 ON_CALL(foo, Concrete(_))
 .WillByDefault(Invoke(&foo, &MockFoo::FooConcrete));

(Why don’t we just write Invoke(&foo, &Foo::Concrete)? If you do
that, MockFoo::Concrete() will be called (and cause an infinite
recursion) since Foo::Concrete() is virtual. That’s just how C++
works.)

Using Matchers

Matching Argument Values Exactly

You can specify exactly which arguments a mock method is expecting:

using ::testing::Return;
...
 EXPECT_CALL(foo, DoThis(5))
 .WillOnce(Return('a'));
 EXPECT_CALL(foo, DoThat("Hello", bar));

Using Simple Matchers

You can use matchers to match arguments that have a certain property:

using ::testing::Ge;
using ::testing::NotNull;
using ::testing::Return;
...
 EXPECT_CALL(foo, DoThis(Ge(5))) // The argument must be >= 5.
 .WillOnce(Return('a'));
 EXPECT_CALL(foo, DoThat("Hello", NotNull()));
 // The second argument must not be NULL.

A frequently used matcher is _, which matches anything:

using ::testing::_;
using ::testing::NotNull;
...
 EXPECT_CALL(foo, DoThat(_, NotNull()));

Combining Matchers

You can build complex matchers from existing ones using AllOf(),
AnyOf(), and Not():

using ::testing::AllOf;
using ::testing::Gt;
using ::testing::HasSubstr;
using ::testing::Ne;
using ::testing::Not;
...
 // The argument must be > 5 and != 10.
 EXPECT_CALL(foo, DoThis(AllOf(Gt(5),
 Ne(10))));

 // The first argument must not contain sub-string "blah".
 EXPECT_CALL(foo, DoThat(Not(HasSubstr("blah")),
 NULL));

Casting Matchers

Google Mock matchers are statically typed, meaning that the compiler
can catch your mistake if you use a matcher of the wrong type (for
example, if you use Eq(5) to match a string argument). Good for
you!

Sometimes, however, you know what you’re doing and want the compiler
to give you some slack. One example is that you have a matcher for
long and the argument you want to match is int. While the two
types aren’t exactly the same, there is nothing really wrong with
using a Matcher<long> to match an int - after all, we can first
convert the int argument to a long before giving it to the
matcher.

To support this need, Google Mock gives you the
SafeMatcherCast<T>(m) function. It casts a matcher m to type
Matcher<T>. To ensure safety, Google Mock checks that (let U be the
type m accepts):

	Type T can be implicitly cast to type U;

	When both T and U are built-in arithmetic types (bool, integers, and floating-point numbers), the conversion from T to U is not lossy (in other words, any value representable by T can also be represented by U); and

	When U is a reference, T must also be a reference (as the underlying matcher may be interested in the address of the U value).

The code won’t compile if any of these conditions aren’t met.

Here’s one example:

using ::testing::SafeMatcherCast;

// A base class and a child class.
class Base { ... };
class Derived : public Base { ... };

class MockFoo : public Foo {
 public:
 MOCK_METHOD1(DoThis, void(Derived* derived));
};
...

 MockFoo foo;
 // m is a Matcher<Base*> we got from somewhere.
 EXPECT_CALL(foo, DoThis(SafeMatcherCast<Derived*>(m)));

If you find SafeMatcherCast<T>(m) too limiting, you can use a similar
function MatcherCast<T>(m). The difference is that MatcherCast works
as long as you can static_cast type T to type U.

MatcherCast essentially lets you bypass C++’s type system
(static_cast isn’t always safe as it could throw away information,
for example), so be careful not to misuse/abuse it.

Selecting Between Overloaded Functions

If you expect an overloaded function to be called, the compiler may
need some help on which overloaded version it is.

To disambiguate functions overloaded on the const-ness of this object,
use the Const() argument wrapper.

using ::testing::ReturnRef;

class MockFoo : public Foo {
 ...
 MOCK_METHOD0(GetBar, Bar&());
 MOCK_CONST_METHOD0(GetBar, const Bar&());
};
...

 MockFoo foo;
 Bar bar1, bar2;
 EXPECT_CALL(foo, GetBar()) // The non-const GetBar().
 .WillOnce(ReturnRef(bar1));
 EXPECT_CALL(Const(foo), GetBar()) // The const GetBar().
 .WillOnce(ReturnRef(bar2));

(Const() is defined by Google Mock and returns a const reference
to its argument.)

To disambiguate overloaded functions with the same number of arguments
but different argument types, you may need to specify the exact type
of a matcher, either by wrapping your matcher in Matcher<type>(), or
using a matcher whose type is fixed (TypedEq<type>, An<type>(),
etc):

using ::testing::An;
using ::testing::Lt;
using ::testing::Matcher;
using ::testing::TypedEq;

class MockPrinter : public Printer {
 public:
 MOCK_METHOD1(Print, void(int n));
 MOCK_METHOD1(Print, void(char c));
};

TEST(PrinterTest, Print) {
 MockPrinter printer;

 EXPECT_CALL(printer, Print(An<int>())); // void Print(int);
 EXPECT_CALL(printer, Print(Matcher<int>(Lt(5)))); // void Print(int);
 EXPECT_CALL(printer, Print(TypedEq<char>('a'))); // void Print(char);

 printer.Print(3);
 printer.Print(6);
 printer.Print('a');
}

Performing Different Actions Based on the Arguments

When a mock method is called, the last matching expectation that’s
still active will be selected (think “newer overrides older”). So, you
can make a method do different things depending on its argument values
like this:

using ::testing::_;
using ::testing::Lt;
using ::testing::Return;
...
 // The default case.
 EXPECT_CALL(foo, DoThis(_))
 .WillRepeatedly(Return('b'));

 // The more specific case.
 EXPECT_CALL(foo, DoThis(Lt(5)))
 .WillRepeatedly(Return('a'));

Now, if foo.DoThis() is called with a value less than 5, 'a' will
be returned; otherwise 'b' will be returned.

Matching Multiple Arguments as a Whole

Sometimes it’s not enough to match the arguments individually. For
example, we may want to say that the first argument must be less than
the second argument. The With() clause allows us to match
all arguments of a mock function as a whole. For example,

using ::testing::_;
using ::testing::Lt;
using ::testing::Ne;
...
 EXPECT_CALL(foo, InRange(Ne(0), _))
 .With(Lt());

says that the first argument of InRange() must not be 0, and must be
less than the second argument.

The expression inside With() must be a matcher of type
Matcher< ::testing::tuple<A1, ..., An> >, where A1, …, An are the
types of the function arguments.

You can also write AllArgs(m) instead of m inside .With(). The
two forms are equivalent, but .With(AllArgs(Lt())) is more readable
than .With(Lt()).

You can use Args<k1, ..., kn>(m) to match the n selected arguments
(as a tuple) against m. For example,

using ::testing::_;
using ::testing::AllOf;
using ::testing::Args;
using ::testing::Lt;
...
 EXPECT_CALL(foo, Blah(_, _, _))
 .With(AllOf(Args<0, 1>(Lt()), Args<1, 2>(Lt())));

says that Blah() will be called with arguments x, y, and z where
x < y < z.

As a convenience and example, Google Mock provides some matchers for
2-tuples, including the Lt() matcher above. See the CheatSheet for
the complete list.

Note that if you want to pass the arguments to a predicate of your own
(e.g. .With(Args<0, 1>(Truly(&MyPredicate)))), that predicate MUST be
written to take a ::testing::tuple as its argument; Google Mock will pass the n selected arguments as one single tuple to the predicate.

Using Matchers as Predicates

Have you noticed that a matcher is just a fancy predicate that also
knows how to describe itself? Many existing algorithms take predicates
as arguments (e.g. those defined in STL’s <algorithm> header), and
it would be a shame if Google Mock matchers are not allowed to
participate.

Luckily, you can use a matcher where a unary predicate functor is
expected by wrapping it inside the Matches() function. For example,

#include <algorithm>
#include <vector>

std::vector<int> v;
...
// How many elements in v are >= 10?
const int count = count_if(v.begin(), v.end(), Matches(Ge(10)));

Since you can build complex matchers from simpler ones easily using
Google Mock, this gives you a way to conveniently construct composite
predicates (doing the same using STL’s <functional> header is just
painful). For example, here’s a predicate that’s satisfied by any
number that is >= 0, <= 100, and != 50:

Matches(AllOf(Ge(0), Le(100), Ne(50)))

Using Matchers in Google Test Assertions

Since matchers are basically predicates that also know how to describe
themselves, there is a way to take advantage of them in
Google Test assertions. It’s
called ASSERT_THAT and EXPECT_THAT:

 ASSERT_THAT(value, matcher); // Asserts that value matches matcher.
 EXPECT_THAT(value, matcher); // The non-fatal version.

For example, in a Google Test test you can write:

#include "gmock/gmock.h"

using ::testing::AllOf;
using ::testing::Ge;
using ::testing::Le;
using ::testing::MatchesRegex;
using ::testing::StartsWith;
...

 EXPECT_THAT(Foo(), StartsWith("Hello"));
 EXPECT_THAT(Bar(), MatchesRegex("Line \\d+"));
 ASSERT_THAT(Baz(), AllOf(Ge(5), Le(10)));

which (as you can probably guess) executes Foo(), Bar(), and
Baz(), and verifies that:

	Foo() returns a string that starts with "Hello".

	Bar() returns a string that matches regular expression "Line \\d+".

	Baz() returns a number in the range [5, 10].

The nice thing about these macros is that they read like
English. They generate informative messages too. For example, if the
first EXPECT_THAT() above fails, the message will be something like:

Value of: Foo()
 Actual: "Hi, world!"
Expected: starts with "Hello"

Credit: The idea of (ASSERT|EXPECT)_THAT was stolen from the
Hamcrest [https://github.com/hamcrest/] project, which adds
assertThat() to JUnit.

Using Predicates as Matchers

Google Mock provides a built-in set of matchers. In case you find them
lacking, you can use an arbitray unary predicate function or functor
as a matcher - as long as the predicate accepts a value of the type
you want. You do this by wrapping the predicate inside the Truly()
function, for example:

using ::testing::Truly;

int IsEven(int n) { return (n % 2) == 0 ? 1 : 0; }
...

 // Bar() must be called with an even number.
 EXPECT_CALL(foo, Bar(Truly(IsEven)));

Note that the predicate function / functor doesn’t have to return
bool. It works as long as the return value can be used as the
condition in statement if (condition)

Matching Arguments that Are Not Copyable

When you do an EXPECT_CALL(mock_obj, Foo(bar)), Google Mock saves
away a copy of bar. When Foo() is called later, Google Mock
compares the argument to Foo() with the saved copy of bar. This
way, you don’t need to worry about bar being modified or destroyed
after the EXPECT_CALL() is executed. The same is true when you use
matchers like Eq(bar), Le(bar), and so on.

But what if bar cannot be copied (i.e. has no copy constructor)? You
could define your own matcher function and use it with Truly(), as
the previous couple of recipes have shown. Or, you may be able to get
away from it if you can guarantee that bar won’t be changed after
the EXPECT_CALL() is executed. Just tell Google Mock that it should
save a reference to bar, instead of a copy of it. Here’s how:

using ::testing::Eq;
using ::testing::ByRef;
using ::testing::Lt;
...
 // Expects that Foo()'s argument == bar.
 EXPECT_CALL(mock_obj, Foo(Eq(ByRef(bar))));

 // Expects that Foo()'s argument < bar.
 EXPECT_CALL(mock_obj, Foo(Lt(ByRef(bar))));

Remember: if you do this, don’t change bar after the
EXPECT_CALL(), or the result is undefined.

Validating a Member of an Object

Often a mock function takes a reference to object as an argument. When
matching the argument, you may not want to compare the entire object
against a fixed object, as that may be over-specification. Instead,
you may need to validate a certain member variable or the result of a
certain getter method of the object. You can do this with Field()
and Property(). More specifically,

Field(&Foo::bar, m)

is a matcher that matches a Foo object whose bar member variable
satisfies matcher m.

Property(&Foo::baz, m)

is a matcher that matches a Foo object whose baz() method returns
a value that satisfies matcher m.

For example:

Expression	Description
:—————————–	:———————————–
Field(&Foo::number, Ge(3))	Matches x where x.number >= 3.
Property(&Foo::name, StartsWith("John "))	Matches x where x.name() starts with "John ".

Note that in Property(&Foo::baz, ...), method baz() must take no
argument and be declared as const.

BTW, Field() and Property() can also match plain pointers to
objects. For instance,

Field(&Foo::number, Ge(3))

matches a plain pointer p where p->number >= 3. If p is NULL,
the match will always fail regardless of the inner matcher.

What if you want to validate more than one members at the same time?
Remember that there is AllOf().

Validating the Value Pointed to by a Pointer Argument

C++ functions often take pointers as arguments. You can use matchers
like IsNull(), NotNull(), and other comparison matchers to match a
pointer, but what if you want to make sure the value pointed to by
the pointer, instead of the pointer itself, has a certain property?
Well, you can use the Pointee(m) matcher.

Pointee(m) matches a pointer iff m matches the value the pointer
points to. For example:

using ::testing::Ge;
using ::testing::Pointee;
...
 EXPECT_CALL(foo, Bar(Pointee(Ge(3))));

expects foo.Bar() to be called with a pointer that points to a value
greater than or equal to 3.

One nice thing about Pointee() is that it treats a NULL pointer as
a match failure, so you can write Pointee(m) instead of

 AllOf(NotNull(), Pointee(m))

without worrying that a NULL pointer will crash your test.

Also, did we tell you that Pointee() works with both raw pointers
and smart pointers (linked_ptr, shared_ptr, scoped_ptr, and
etc)?

What if you have a pointer to pointer? You guessed it - you can use
nested Pointee() to probe deeper inside the value. For example,
Pointee(Pointee(Lt(3))) matches a pointer that points to a pointer
that points to a number less than 3 (what a mouthful…).

Testing a Certain Property of an Object

Sometimes you want to specify that an object argument has a certain
property, but there is no existing matcher that does this. If you want
good error messages, you should define a matcher. If you want to do it
quick and dirty, you could get away with writing an ordinary function.

Let’s say you have a mock function that takes an object of type Foo,
which has an int bar() method and an int baz() method, and you
want to constrain that the argument’s bar() value plus its baz()
value is a given number. Here’s how you can define a matcher to do it:

using ::testing::MatcherInterface;
using ::testing::MatchResultListener;

class BarPlusBazEqMatcher : public MatcherInterface<const Foo&> {
 public:
 explicit BarPlusBazEqMatcher(int expected_sum)
 : expected_sum_(expected_sum) {}

 virtual bool MatchAndExplain(const Foo& foo,
 MatchResultListener* listener) const {
 return (foo.bar() + foo.baz()) == expected_sum_;
 }

 virtual void DescribeTo(::std::ostream* os) const {
 *os << "bar() + baz() equals " << expected_sum_;
 }

 virtual void DescribeNegationTo(::std::ostream* os) const {
 *os << "bar() + baz() does not equal " << expected_sum_;
 }
 private:
 const int expected_sum_;
};

inline Matcher<const Foo&> BarPlusBazEq(int expected_sum) {
 return MakeMatcher(new BarPlusBazEqMatcher(expected_sum));
}

...

 EXPECT_CALL(..., DoThis(BarPlusBazEq(5)))...;

Matching Containers

Sometimes an STL container (e.g. list, vector, map, …) is passed to
a mock function and you may want to validate it. Since most STL
containers support the == operator, you can write
Eq(expected_container) or simply expected_container to match a
container exactly.

Sometimes, though, you may want to be more flexible (for example, the
first element must be an exact match, but the second element can be
any positive number, and so on). Also, containers used in tests often
have a small number of elements, and having to define the expected
container out-of-line is a bit of a hassle.

You can use the ElementsAre() or UnorderedElementsAre() matcher in
such cases:

using ::testing::_;
using ::testing::ElementsAre;
using ::testing::Gt;
...

 MOCK_METHOD1(Foo, void(const vector<int>& numbers));
...

 EXPECT_CALL(mock, Foo(ElementsAre(1, Gt(0), _, 5)));

The above matcher says that the container must have 4 elements, which
must be 1, greater than 0, anything, and 5 respectively.

If you instead write:

using ::testing::_;
using ::testing::Gt;
using ::testing::UnorderedElementsAre;
...

 MOCK_METHOD1(Foo, void(const vector<int>& numbers));
...

 EXPECT_CALL(mock, Foo(UnorderedElementsAre(1, Gt(0), _, 5)));

It means that the container must have 4 elements, which under some
permutation must be 1, greater than 0, anything, and 5 respectively.

ElementsAre() and UnorderedElementsAre() are overloaded to take 0
to 10 arguments. If more are needed, you can place them in a C-style
array and use ElementsAreArray() or UnorderedElementsAreArray()
instead:

using ::testing::ElementsAreArray;
...

 // ElementsAreArray accepts an array of element values.
 const int expected_vector1[] = { 1, 5, 2, 4, ... };
 EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector1)));

 // Or, an array of element matchers.
 Matcher<int> expected_vector2 = { 1, Gt(2), _, 3, ... };
 EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector2)));

In case the array needs to be dynamically created (and therefore the
array size cannot be inferred by the compiler), you can give
ElementsAreArray() an additional argument to specify the array size:

using ::testing::ElementsAreArray;
...
 int* const expected_vector3 = new int[count];
 ... fill expected_vector3 with values ...
 EXPECT_CALL(mock, Foo(ElementsAreArray(expected_vector3, count)));

Tips:

	ElementsAre*() can be used to match any container that implements the STL iterator pattern (i.e. it has a const_iterator type and supports begin()/end()), not just the ones defined in STL. It will even work with container types yet to be written - as long as they follows the above pattern.

	You can use nested ElementsAre*() to match nested (multi-dimensional) containers.

	If the container is passed by pointer instead of by reference, just write Pointee(ElementsAre*(...)).

	The order of elements matters for ElementsAre*(). Therefore don’t use it with containers whose element order is undefined (e.g. hash_map).

Sharing Matchers

Under the hood, a Google Mock matcher object consists of a pointer to
a ref-counted implementation object. Copying matchers is allowed and
very efficient, as only the pointer is copied. When the last matcher
that references the implementation object dies, the implementation
object will be deleted.

Therefore, if you have some complex matcher that you want to use again
and again, there is no need to build it every time. Just assign it to a
matcher variable and use that variable repeatedly! For example,

 Matcher<int> in_range = AllOf(Gt(5), Le(10));
 ... use in_range as a matcher in multiple EXPECT_CALLs ...

Setting Expectations

Knowing When to Expect

ON_CALL is likely the single most under-utilized construct in Google Mock.

There are basically two constructs for defining the behavior of a mock object: ON_CALL and EXPECT_CALL. The difference? ON_CALL defines what happens when a mock method is called, but doesn’t imply any expectation on the method being called. EXPECT_CALL not only defines the behavior, but also sets an expectation that the method will be called with the given arguments, for the given number of times (and in the given order when you specify the order too).

Since EXPECT_CALL does more, isn’t it better than ON_CALL? Not really. Every EXPECT_CALL adds a constraint on the behavior of the code under test. Having more constraints than necessary is baaad - even worse than not having enough constraints.

This may be counter-intuitive. How could tests that verify more be worse than tests that verify less? Isn’t verification the whole point of tests?

The answer, lies in what a test should verify. A good test verifies the contract of the code. If a test over-specifies, it doesn’t leave enough freedom to the implementation. As a result, changing the implementation without breaking the contract (e.g. refactoring and optimization), which should be perfectly fine to do, can break such tests. Then you have to spend time fixing them, only to see them broken again the next time the implementation is changed.

Keep in mind that one doesn’t have to verify more than one property in one test. In fact, it’s a good style to verify only one thing in one test. If you do that, a bug will likely break only one or two tests instead of dozens (which case would you rather debug?). If you are also in the habit of giving tests descriptive names that tell what they verify, you can often easily guess what’s wrong just from the test log itself.

So use ON_CALL by default, and only use EXPECT_CALL when you actually intend to verify that the call is made. For example, you may have a bunch of ON_CALLs in your test fixture to set the common mock behavior shared by all tests in the same group, and write (scarcely) different EXPECT_CALLs in different TEST_Fs to verify different aspects of the code’s behavior. Compared with the style where each TEST has many EXPECT_CALLs, this leads to tests that are more resilient to implementational changes (and thus less likely to require maintenance) and makes the intent of the tests more obvious (so they are easier to maintain when you do need to maintain them).

If you are bothered by the “Uninteresting mock function call” message printed when a mock method without an EXPECT_CALL is called, you may use a NiceMock instead to suppress all such messages for the mock object, or suppress the message for specific methods by adding EXPECT_CALL(...).Times(AnyNumber()). DO NOT suppress it by blindly adding an EXPECT_CALL(...), or you’ll have a test that’s a pain to maintain.

Ignoring Uninteresting Calls

If you are not interested in how a mock method is called, just don’t
say anything about it. In this case, if the method is ever called,
Google Mock will perform its default action to allow the test program
to continue. If you are not happy with the default action taken by
Google Mock, you can override it using DefaultValue<T>::Set()
(described later in this document) or ON_CALL().

Please note that once you expressed interest in a particular mock
method (via EXPECT_CALL()), all invocations to it must match some
expectation. If this function is called but the arguments don’t match
any EXPECT_CALL() statement, it will be an error.

Disallowing Unexpected Calls

If a mock method shouldn’t be called at all, explicitly say so:

using ::testing::_;
...
 EXPECT_CALL(foo, Bar(_))
 .Times(0);

If some calls to the method are allowed, but the rest are not, just
list all the expected calls:

using ::testing::AnyNumber;
using ::testing::Gt;
...
 EXPECT_CALL(foo, Bar(5));
 EXPECT_CALL(foo, Bar(Gt(10)))
 .Times(AnyNumber());

A call to foo.Bar() that doesn’t match any of the EXPECT_CALL()
statements will be an error.

Understanding Uninteresting vs Unexpected Calls

Uninteresting calls and unexpected calls are different concepts in Google Mock. Very different.

A call x.Y(...) is uninteresting if there’s not even a single EXPECT_CALL(x, Y(...)) set. In other words, the test isn’t interested in the x.Y() method at all, as evident in that the test doesn’t care to say anything about it.

A call x.Y(...) is unexpected if there are some EXPECT_CALL(x, Y(...))s set, but none of them matches the call. Put another way, the test is interested in the x.Y() method (therefore it explicitly sets some EXPECT_CALL to verify how it’s called); however, the verification fails as the test doesn’t expect this particular call to happen.

An unexpected call is always an error, as the code under test doesn’t behave the way the test expects it to behave.

By default, an uninteresting call is not an error, as it violates no constraint specified by the test. (Google Mock’s philosophy is that saying nothing means there is no constraint.) However, it leads to a warning, as it might indicate a problem (e.g. the test author might have forgotten to specify a constraint).

In Google Mock, NiceMock and StrictMock can be used to make a mock class “nice” or “strict”. How does this affect uninteresting calls and unexpected calls?

A nice mock suppresses uninteresting call warnings. It is less chatty than the default mock, but otherwise is the same. If a test fails with a default mock, it will also fail using a nice mock instead. And vice versa. Don’t expect making a mock nice to change the test’s result.

A strict mock turns uninteresting call warnings into errors. So making a mock strict may change the test’s result.

Let’s look at an example:

TEST(...) {
 NiceMock<MockDomainRegistry> mock_registry;
 EXPECT_CALL(mock_registry, GetDomainOwner("google.com"))
 .WillRepeatedly(Return("Larry Page"));

 // Use mock_registry in code under test.
 ... &mock_registry ...
}

The sole EXPECT_CALL here says that all calls to GetDomainOwner() must have "google.com" as the argument. If GetDomainOwner("yahoo.com") is called, it will be an unexpected call, and thus an error. Having a nice mock doesn’t change the severity of an unexpected call.

So how do we tell Google Mock that GetDomainOwner() can be called with some other arguments as well? The standard technique is to add a “catch all” EXPECT_CALL:

 EXPECT_CALL(mock_registry, GetDomainOwner(_))
 .Times(AnyNumber()); // catches all other calls to this method.
 EXPECT_CALL(mock_registry, GetDomainOwner("google.com"))
 .WillRepeatedly(Return("Larry Page"));

Remember that _ is the wildcard matcher that matches anything. With this, if GetDomainOwner("google.com") is called, it will do what the second EXPECT_CALL says; if it is called with a different argument, it will do what the first EXPECT_CALL says.

Note that the order of the two EXPECT_CALLs is important, as a newer EXPECT_CALL takes precedence over an older one.

For more on uninteresting calls, nice mocks, and strict mocks, read “The Nice, the Strict, and the Naggy”.

Expecting Ordered Calls

Although an EXPECT_CALL() statement defined earlier takes precedence
when Google Mock tries to match a function call with an expectation,
by default calls don’t have to happen in the order EXPECT_CALL()
statements are written. For example, if the arguments match the
matchers in the third EXPECT_CALL(), but not those in the first two,
then the third expectation will be used.

If you would rather have all calls occur in the order of the
expectations, put the EXPECT_CALL() statements in a block where you
define a variable of type InSequence:

 using ::testing::_;
 using ::testing::InSequence;

 {
 InSequence s;

 EXPECT_CALL(foo, DoThis(5));
 EXPECT_CALL(bar, DoThat(_))
 .Times(2);
 EXPECT_CALL(foo, DoThis(6));
 }

In this example, we expect a call to foo.DoThis(5), followed by two
calls to bar.DoThat() where the argument can be anything, which are
in turn followed by a call to foo.DoThis(6). If a call occurred
out-of-order, Google Mock will report an error.

Expecting Partially Ordered Calls

Sometimes requiring everything to occur in a predetermined order can
lead to brittle tests. For example, we may care about A occurring
before both B and C, but aren’t interested in the relative order
of B and C. In this case, the test should reflect our real intent,
instead of being overly constraining.

Google Mock allows you to impose an arbitrary DAG (directed acyclic
graph) on the calls. One way to express the DAG is to use the
After clause of EXPECT_CALL.

Another way is via the InSequence() clause (not the same as the
InSequence class), which we borrowed from jMock 2. It’s less
flexible than After(), but more convenient when you have long chains
of sequential calls, as it doesn’t require you to come up with
different names for the expectations in the chains. Here’s how it
works:

If we view EXPECT_CALL() statements as nodes in a graph, and add an
edge from node A to node B wherever A must occur before B, we can get
a DAG. We use the term “sequence” to mean a directed path in this
DAG. Now, if we decompose the DAG into sequences, we just need to know
which sequences each EXPECT_CALL() belongs to in order to be able to
reconstruct the original DAG.

So, to specify the partial order on the expectations we need to do two
things: first to define some Sequence objects, and then for each
EXPECT_CALL() say which Sequence objects it is part
of. Expectations in the same sequence must occur in the order they are
written. For example,

 using ::testing::Sequence;

 Sequence s1, s2;

 EXPECT_CALL(foo, A())
 .InSequence(s1, s2);
 EXPECT_CALL(bar, B())
 .InSequence(s1);
 EXPECT_CALL(bar, C())
 .InSequence(s2);
 EXPECT_CALL(foo, D())
 .InSequence(s2);

specifies the following DAG (where s1 is A -> B, and s2 is A -> C -> D):

 +---> B
 |
 A ---|
 |
 +---> C ---> D

This means that A must occur before B and C, and C must occur before
D. There’s no restriction about the order other than these.

Controlling When an Expectation Retires

When a mock method is called, Google Mock only consider expectations
that are still active. An expectation is active when created, and
becomes inactive (aka retires) when a call that has to occur later
has occurred. For example, in

 using ::testing::_;
 using ::testing::Sequence;

 Sequence s1, s2;

 EXPECT_CALL(log, Log(WARNING, _, "File too large.")) // #1
 .Times(AnyNumber())
 .InSequence(s1, s2);
 EXPECT_CALL(log, Log(WARNING, _, "Data set is empty.")) // #2
 .InSequence(s1);
 EXPECT_CALL(log, Log(WARNING, _, "User not found.")) // #3
 .InSequence(s2);

as soon as either #2 or #3 is matched, #1 will retire. If a warning
"File too large." is logged after this, it will be an error.

Note that an expectation doesn’t retire automatically when it’s
saturated. For example,

using ::testing::_;
...
 EXPECT_CALL(log, Log(WARNING, _, _)); // #1
 EXPECT_CALL(log, Log(WARNING, _, "File too large.")); // #2

says that there will be exactly one warning with the message "File too large.". If the second warning contains this message too, #2 will
match again and result in an upper-bound-violated error.

If this is not what you want, you can ask an expectation to retire as
soon as it becomes saturated:

using ::testing::_;
...
 EXPECT_CALL(log, Log(WARNING, _, _)); // #1
 EXPECT_CALL(log, Log(WARNING, _, "File too large.")) // #2
 .RetiresOnSaturation();

Here #2 can be used only once, so if you have two warnings with the
message "File too large.", the first will match #2 and the second
will match #1 - there will be no error.

Using Actions

Returning References from Mock Methods

If a mock function’s return type is a reference, you need to use
ReturnRef() instead of Return() to return a result:

using ::testing::ReturnRef;

class MockFoo : public Foo {
 public:
 MOCK_METHOD0(GetBar, Bar&());
};
...

 MockFoo foo;
 Bar bar;
 EXPECT_CALL(foo, GetBar())
 .WillOnce(ReturnRef(bar));

Returning Live Values from Mock Methods

The Return(x) action saves a copy of x when the action is
created, and always returns the same value whenever it’s
executed. Sometimes you may want to instead return the live value of
x (i.e. its value at the time when the action is executed.).

If the mock function’s return type is a reference, you can do it using
ReturnRef(x), as shown in the previous recipe (“Returning References
from Mock Methods”). However, Google Mock doesn’t let you use
ReturnRef() in a mock function whose return type is not a reference,
as doing that usually indicates a user error. So, what shall you do?

You may be tempted to try ByRef():

using testing::ByRef;
using testing::Return;

class MockFoo : public Foo {
 public:
 MOCK_METHOD0(GetValue, int());
};
...
 int x = 0;
 MockFoo foo;
 EXPECT_CALL(foo, GetValue())
 .WillRepeatedly(Return(ByRef(x)));
 x = 42;
 EXPECT_EQ(42, foo.GetValue());

Unfortunately, it doesn’t work here. The above code will fail with error:

Value of: foo.GetValue()
 Actual: 0
Expected: 42

The reason is that Return(value) converts value to the actual
return type of the mock function at the time when the action is
created, not when it is executed. (This behavior was chosen for
the action to be safe when value is a proxy object that references
some temporary objects.) As a result, ByRef(x) is converted to an
int value (instead of a const int&) when the expectation is set,
and Return(ByRef(x)) will always return 0.

ReturnPointee(pointer) was provided to solve this problem
specifically. It returns the value pointed to by pointer at the time
the action is executed:

using testing::ReturnPointee;
...
 int x = 0;
 MockFoo foo;
 EXPECT_CALL(foo, GetValue())
 .WillRepeatedly(ReturnPointee(&x)); // Note the & here.
 x = 42;
 EXPECT_EQ(42, foo.GetValue()); // This will succeed now.

Combining Actions

Want to do more than one thing when a function is called? That’s
fine. DoAll() allow you to do sequence of actions every time. Only
the return value of the last action in the sequence will be used.

using ::testing::DoAll;

class MockFoo : public Foo {
 public:
 MOCK_METHOD1(Bar, bool(int n));
};
...

 EXPECT_CALL(foo, Bar(_))
 .WillOnce(DoAll(action_1,
 action_2,
 ...
 action_n));

Mocking Side Effects

Sometimes a method exhibits its effect not via returning a value but
via side effects. For example, it may change some global state or
modify an output argument. To mock side effects, in general you can
define your own action by implementing ::testing::ActionInterface.

If all you need to do is to change an output argument, the built-in
SetArgPointee() action is convenient:

using ::testing::SetArgPointee;

class MockMutator : public Mutator {
 public:
 MOCK_METHOD2(Mutate, void(bool mutate, int* value));
 ...
};
...

 MockMutator mutator;
 EXPECT_CALL(mutator, Mutate(true, _))
 .WillOnce(SetArgPointee<1>(5));

In this example, when mutator.Mutate() is called, we will assign 5
to the int variable pointed to by argument #1
(0-based).

SetArgPointee() conveniently makes an internal copy of the
value you pass to it, removing the need to keep the value in scope and
alive. The implication however is that the value must have a copy
constructor and assignment operator.

If the mock method also needs to return a value as well, you can chain
SetArgPointee() with Return() using DoAll():

using ::testing::_;
using ::testing::Return;
using ::testing::SetArgPointee;

class MockMutator : public Mutator {
 public:
 ...
 MOCK_METHOD1(MutateInt, bool(int* value));
};
...

 MockMutator mutator;
 EXPECT_CALL(mutator, MutateInt(_))
 .WillOnce(DoAll(SetArgPointee<0>(5),
 Return(true)));

If the output argument is an array, use the
SetArrayArgument<N>(first, last) action instead. It copies the
elements in source range [first, last) to the array pointed to by
the N-th (0-based) argument:

using ::testing::NotNull;
using ::testing::SetArrayArgument;

class MockArrayMutator : public ArrayMutator {
 public:
 MOCK_METHOD2(Mutate, void(int* values, int num_values));
 ...
};
...

 MockArrayMutator mutator;
 int values[5] = { 1, 2, 3, 4, 5 };
 EXPECT_CALL(mutator, Mutate(NotNull(), 5))
 .WillOnce(SetArrayArgument<0>(values, values + 5));

This also works when the argument is an output iterator:

using ::testing::_;
using ::testing::SetArrayArgument;

class MockRolodex : public Rolodex {
 public:
 MOCK_METHOD1(GetNames, void(std::back_insert_iterator<vector<string> >));
 ...
};
...

 MockRolodex rolodex;
 vector<string> names;
 names.push_back("George");
 names.push_back("John");
 names.push_back("Thomas");
 EXPECT_CALL(rolodex, GetNames(_))
 .WillOnce(SetArrayArgument<0>(names.begin(), names.end()));

Changing a Mock Object’s Behavior Based on the State

If you expect a call to change the behavior of a mock object, you can use ::testing::InSequence to specify different behaviors before and after the call:

using ::testing::InSequence;
using ::testing::Return;

...
 {
 InSequence seq;
 EXPECT_CALL(my_mock, IsDirty())
 .WillRepeatedly(Return(true));
 EXPECT_CALL(my_mock, Flush());
 EXPECT_CALL(my_mock, IsDirty())
 .WillRepeatedly(Return(false));
 }
 my_mock.FlushIfDirty();

This makes my_mock.IsDirty() return true before my_mock.Flush() is called and return false afterwards.

If the behavior change is more complex, you can store the effects in a variable and make a mock method get its return value from that variable:

using ::testing::_;
using ::testing::SaveArg;
using ::testing::Return;

ACTION_P(ReturnPointee, p) { return *p; }
...
 int previous_value = 0;
 EXPECT_CALL(my_mock, GetPrevValue())
 .WillRepeatedly(ReturnPointee(&previous_value));
 EXPECT_CALL(my_mock, UpdateValue(_))
 .WillRepeatedly(SaveArg<0>(&previous_value));
 my_mock.DoSomethingToUpdateValue();

Here my_mock.GetPrevValue() will always return the argument of the last UpdateValue() call.

Setting the Default Value for a Return Type

If a mock method’s return type is a built-in C++ type or pointer, by
default it will return 0 when invoked. Also, in C++ 11 and above, a mock
method whose return type has a default constructor will return a default-constructed
value by default. You only need to specify an
action if this default value doesn’t work for you.

Sometimes, you may want to change this default value, or you may want
to specify a default value for types Google Mock doesn’t know
about. You can do this using the ::testing::DefaultValue class
template:

class MockFoo : public Foo {
 public:
 MOCK_METHOD0(CalculateBar, Bar());
};
...

 Bar default_bar;
 // Sets the default return value for type Bar.
 DefaultValue<Bar>::Set(default_bar);

 MockFoo foo;

 // We don't need to specify an action here, as the default
 // return value works for us.
 EXPECT_CALL(foo, CalculateBar());

 foo.CalculateBar(); // This should return default_bar.

 // Unsets the default return value.
 DefaultValue<Bar>::Clear();

Please note that changing the default value for a type can make you
tests hard to understand. We recommend you to use this feature
judiciously. For example, you may want to make sure the Set() and
Clear() calls are right next to the code that uses your mock.

Setting the Default Actions for a Mock Method

You’ve learned how to change the default value of a given
type. However, this may be too coarse for your purpose: perhaps you
have two mock methods with the same return type and you want them to
have different behaviors. The ON_CALL() macro allows you to
customize your mock’s behavior at the method level:

using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Gt;
using ::testing::Return;
...
 ON_CALL(foo, Sign(_))
 .WillByDefault(Return(-1));
 ON_CALL(foo, Sign(0))
 .WillByDefault(Return(0));
 ON_CALL(foo, Sign(Gt(0)))
 .WillByDefault(Return(1));

 EXPECT_CALL(foo, Sign(_))
 .Times(AnyNumber());

 foo.Sign(5); // This should return 1.
 foo.Sign(-9); // This should return -1.
 foo.Sign(0); // This should return 0.

As you may have guessed, when there are more than one ON_CALL()
statements, the news order take precedence over the older ones. In
other words, the last one that matches the function arguments will
be used. This matching order allows you to set up the common behavior
in a mock object’s constructor or the test fixture’s set-up phase and
specialize the mock’s behavior later.

Using Functions/Methods/Functors as Actions

If the built-in actions don’t suit you, you can easily use an existing
function, method, or functor as an action:

using ::testing::_;
using ::testing::Invoke;

class MockFoo : public Foo {
 public:
 MOCK_METHOD2(Sum, int(int x, int y));
 MOCK_METHOD1(ComplexJob, bool(int x));
};

int CalculateSum(int x, int y) { return x + y; }

class Helper {
 public:
 bool ComplexJob(int x);
};
...

 MockFoo foo;
 Helper helper;
 EXPECT_CALL(foo, Sum(_, _))
 .WillOnce(Invoke(CalculateSum));
 EXPECT_CALL(foo, ComplexJob(_))
 .WillOnce(Invoke(&helper, &Helper::ComplexJob));

 foo.Sum(5, 6); // Invokes CalculateSum(5, 6).
 foo.ComplexJob(10); // Invokes helper.ComplexJob(10);

The only requirement is that the type of the function, etc must be
compatible with the signature of the mock function, meaning that the
latter’s arguments can be implicitly converted to the corresponding
arguments of the former, and the former’s return type can be
implicitly converted to that of the latter. So, you can invoke
something whose type is not exactly the same as the mock function,
as long as it’s safe to do so - nice, huh?

Invoking a Function/Method/Functor Without Arguments

Invoke() is very useful for doing actions that are more complex. It
passes the mock function’s arguments to the function or functor being
invoked such that the callee has the full context of the call to work
with. If the invoked function is not interested in some or all of the
arguments, it can simply ignore them.

Yet, a common pattern is that a test author wants to invoke a function
without the arguments of the mock function. Invoke() allows her to
do that using a wrapper function that throws away the arguments before
invoking an underlining nullary function. Needless to say, this can be
tedious and obscures the intent of the test.

InvokeWithoutArgs() solves this problem. It’s like Invoke() except
that it doesn’t pass the mock function’s arguments to the
callee. Here’s an example:

using ::testing::_;
using ::testing::InvokeWithoutArgs;

class MockFoo : public Foo {
 public:
 MOCK_METHOD1(ComplexJob, bool(int n));
};

bool Job1() { ... }
...

 MockFoo foo;
 EXPECT_CALL(foo, ComplexJob(_))
 .WillOnce(InvokeWithoutArgs(Job1));

 foo.ComplexJob(10); // Invokes Job1().

Invoking an Argument of the Mock Function

Sometimes a mock function will receive a function pointer or a functor
(in other words, a “callable”) as an argument, e.g.

class MockFoo : public Foo {
 public:
 MOCK_METHOD2(DoThis, bool(int n, bool (*fp)(int)));
};

and you may want to invoke this callable argument:

using ::testing::_;
...
 MockFoo foo;
 EXPECT_CALL(foo, DoThis(_, _))
 .WillOnce(...);
 // Will execute (*fp)(5), where fp is the
 // second argument DoThis() receives.

Arghh, you need to refer to a mock function argument but your version
of C++ has no lambdas, so you have to define your own action. :-(
Or do you really?

Well, Google Mock has an action to solve exactly this problem:

 InvokeArgument<N>(arg_1, arg_2, ..., arg_m)

will invoke the N-th (0-based) argument the mock function receives,
with arg_1, arg_2, …, and arg_m. No matter if the argument is
a function pointer or a functor, Google Mock handles them both.

With that, you could write:

using ::testing::_;
using ::testing::InvokeArgument;
...
 EXPECT_CALL(foo, DoThis(_, _))
 .WillOnce(InvokeArgument<1>(5));
 // Will execute (*fp)(5), where fp is the
 // second argument DoThis() receives.

What if the callable takes an argument by reference? No problem - just
wrap it inside ByRef():

...
 MOCK_METHOD1(Bar, bool(bool (*fp)(int, const Helper&)));
...
using ::testing::_;
using ::testing::ByRef;
using ::testing::InvokeArgument;
...

 MockFoo foo;
 Helper helper;
 ...
 EXPECT_CALL(foo, Bar(_))
 .WillOnce(InvokeArgument<0>(5, ByRef(helper)));
 // ByRef(helper) guarantees that a reference to helper, not a copy of it,
 // will be passed to the callable.

What if the callable takes an argument by reference and we do not
wrap the argument in ByRef()? Then InvokeArgument() will make a
copy of the argument, and pass a reference to the copy, instead of
a reference to the original value, to the callable. This is especially
handy when the argument is a temporary value:

...
 MOCK_METHOD1(DoThat, bool(bool (*f)(const double& x, const string& s)));
...
using ::testing::_;
using ::testing::InvokeArgument;
...

 MockFoo foo;
 ...
 EXPECT_CALL(foo, DoThat(_))
 .WillOnce(InvokeArgument<0>(5.0, string("Hi")));
 // Will execute (*f)(5.0, string("Hi")), where f is the function pointer
 // DoThat() receives. Note that the values 5.0 and string("Hi") are
 // temporary and dead once the EXPECT_CALL() statement finishes. Yet
 // it's fine to perform this action later, since a copy of the values
 // are kept inside the InvokeArgument action.

Ignoring an Action’s Result

Sometimes you have an action that returns something, but you need an
action that returns void (perhaps you want to use it in a mock
function that returns void, or perhaps it needs to be used in
DoAll() and it’s not the last in the list). IgnoreResult() lets
you do that. For example:

using ::testing::_;
using ::testing::Invoke;
using ::testing::Return;

int Process(const MyData& data);
string DoSomething();

class MockFoo : public Foo {
 public:
 MOCK_METHOD1(Abc, void(const MyData& data));
 MOCK_METHOD0(Xyz, bool());
};
...

 MockFoo foo;
 EXPECT_CALL(foo, Abc(_))
 // .WillOnce(Invoke(Process));
 // The above line won't compile as Process() returns int but Abc() needs
 // to return void.
 .WillOnce(IgnoreResult(Invoke(Process)));

 EXPECT_CALL(foo, Xyz())
 .WillOnce(DoAll(IgnoreResult(Invoke(DoSomething)),
 // Ignores the string DoSomething() returns.
 Return(true)));

Note that you cannot use IgnoreResult() on an action that already
returns void. Doing so will lead to ugly compiler errors.

Selecting an Action’s Arguments

Say you have a mock function Foo() that takes seven arguments, and
you have a custom action that you want to invoke when Foo() is
called. Trouble is, the custom action only wants three arguments:

using ::testing::_;
using ::testing::Invoke;
...
 MOCK_METHOD7(Foo, bool(bool visible, const string& name, int x, int y,
 const map<pair<int, int>, double>& weight,
 double min_weight, double max_wight));
...

bool IsVisibleInQuadrant1(bool visible, int x, int y) {
 return visible && x >= 0 && y >= 0;
}
...

 EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _))
 .WillOnce(Invoke(IsVisibleInQuadrant1)); // Uh, won't compile. :-(

To please the compiler God, you can to define an “adaptor” that has
the same signature as Foo() and calls the custom action with the
right arguments:

using ::testing::_;
using ::testing::Invoke;

bool MyIsVisibleInQuadrant1(bool visible, const string& name, int x, int y,
 const map<pair<int, int>, double>& weight,
 double min_weight, double max_wight) {
 return IsVisibleInQuadrant1(visible, x, y);
}
...

 EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _))
 .WillOnce(Invoke(MyIsVisibleInQuadrant1)); // Now it works.

But isn’t this awkward?

Google Mock provides a generic action adaptor, so you can spend your
time minding more important business than writing your own
adaptors. Here’s the syntax:

 WithArgs<N1, N2, ..., Nk>(action)

creates an action that passes the arguments of the mock function at
the given indices (0-based) to the inner action and performs
it. Using WithArgs, our original example can be written as:

using ::testing::_;
using ::testing::Invoke;
using ::testing::WithArgs;
...
 EXPECT_CALL(mock, Foo(_, _, _, _, _, _, _))
 .WillOnce(WithArgs<0, 2, 3>(Invoke(IsVisibleInQuadrant1)));
 // No need to define your own adaptor.

For better readability, Google Mock also gives you:

	WithoutArgs(action) when the inner action takes no argument, and

	WithArg<N>(action) (no s after Arg) when the inner action takes one argument.

As you may have realized, InvokeWithoutArgs(...) is just syntactic
sugar for WithoutArgs(Invoke(...)).

Here are more tips:

	The inner action used in WithArgs and friends does not have to be Invoke() – it can be anything.

	You can repeat an argument in the argument list if necessary, e.g. WithArgs<2, 3, 3, 5>(...).

	You can change the order of the arguments, e.g. WithArgs<3, 2, 1>(...).

	The types of the selected arguments do not have to match the signature of the inner action exactly. It works as long as they can be implicitly converted to the corresponding arguments of the inner action. For example, if the 4-th argument of the mock function is an int and my_action takes a double, WithArg<4>(my_action) will work.

Ignoring Arguments in Action Functions

The selecting-an-action’s-arguments recipe showed us one way to make a
mock function and an action with incompatible argument lists fit
together. The downside is that wrapping the action in
WithArgs<...>() can get tedious for people writing the tests.

If you are defining a function, method, or functor to be used with
Invoke*(), and you are not interested in some of its arguments, an
alternative to WithArgs is to declare the uninteresting arguments as
Unused. This makes the definition less cluttered and less fragile in
case the types of the uninteresting arguments change. It could also
increase the chance the action function can be reused. For example,
given

 MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 MOCK_METHOD3(Bar, double(int index, double x, double y));

instead of

using ::testing::_;
using ::testing::Invoke;

double DistanceToOriginWithLabel(const string& label, double x, double y) {
 return sqrt(x*x + y*y);
}

double DistanceToOriginWithIndex(int index, double x, double y) {
 return sqrt(x*x + y*y);
}
...

 EXEPCT_CALL(mock, Foo("abc", _, _))
 .WillOnce(Invoke(DistanceToOriginWithLabel));
 EXEPCT_CALL(mock, Bar(5, _, _))
 .WillOnce(Invoke(DistanceToOriginWithIndex));

you could write

using ::testing::_;
using ::testing::Invoke;
using ::testing::Unused;

double DistanceToOrigin(Unused, double x, double y) {
 return sqrt(x*x + y*y);
}
...

 EXEPCT_CALL(mock, Foo("abc", _, _))
 .WillOnce(Invoke(DistanceToOrigin));
 EXEPCT_CALL(mock, Bar(5, _, _))
 .WillOnce(Invoke(DistanceToOrigin));

Sharing Actions

Just like matchers, a Google Mock action object consists of a pointer
to a ref-counted implementation object. Therefore copying actions is
also allowed and very efficient. When the last action that references
the implementation object dies, the implementation object will be
deleted.

If you have some complex action that you want to use again and again,
you may not have to build it from scratch every time. If the action
doesn’t have an internal state (i.e. if it always does the same thing
no matter how many times it has been called), you can assign it to an
action variable and use that variable repeatedly. For example:

 Action<bool(int*)> set_flag = DoAll(SetArgPointee<0>(5),
 Return(true));
 ... use set_flag in .WillOnce() and .WillRepeatedly() ...

However, if the action has its own state, you may be surprised if you
share the action object. Suppose you have an action factory
IncrementCounter(init) which creates an action that increments and
returns a counter whose initial value is init, using two actions
created from the same expression and using a shared action will
exihibit different behaviors. Example:

 EXPECT_CALL(foo, DoThis())
 .WillRepeatedly(IncrementCounter(0));
 EXPECT_CALL(foo, DoThat())
 .WillRepeatedly(IncrementCounter(0));
 foo.DoThis(); // Returns 1.
 foo.DoThis(); // Returns 2.
 foo.DoThat(); // Returns 1 - Blah() uses a different
 // counter than Bar()'s.

versus

 Action<int()> increment = IncrementCounter(0);

 EXPECT_CALL(foo, DoThis())
 .WillRepeatedly(increment);
 EXPECT_CALL(foo, DoThat())
 .WillRepeatedly(increment);
 foo.DoThis(); // Returns 1.
 foo.DoThis(); // Returns 2.
 foo.DoThat(); // Returns 3 - the counter is shared.

Misc Recipes on Using Google Mock

Mocking Methods That Use Move-Only Types

C++11 introduced move-only types. A move-only-typed value can be moved from
one object to another, but cannot be copied. std::unique_ptr<T> is
probably the most commonly used move-only type.

Mocking a method that takes and/or returns move-only types presents some
challenges, but nothing insurmountable. This recipe shows you how you can do it.
Note that the support for move-only method arguments was only introduced to
gMock in April 2017; in older code, you may find more complex
workarounds for lack of this feature.

Let’s say we are working on a fictional project that lets one post and share
snippets called “buzzes”. Your code uses these types:

enum class AccessLevel { kInternal, kPublic };

class Buzz {
 public:
 explicit Buzz(AccessLevel access) { ... }
 ...
};

class Buzzer {
 public:
 virtual ~Buzzer() {}
 virtual std::unique_ptr<Buzz> MakeBuzz(StringPiece text) = 0;
 virtual bool ShareBuzz(std::unique_ptr<Buzz> buzz, int64_t timestamp) = 0;
 ...
};

A Buzz object represents a snippet being posted. A class that implements the
Buzzer interface is capable of creating and sharing Buzzes. Methods in
Buzzer may return a unique_ptr<Buzz> or take a
unique_ptr<Buzz>. Now we need to mock Buzzer in our tests.

To mock a method that accepts or returns move-only types, you just use the
familiar MOCK_METHOD syntax as usual:

class MockBuzzer : public Buzzer {
 public:
 MOCK_METHOD1(MakeBuzz, std::unique_ptr<Buzz>(StringPiece text));
 MOCK_METHOD2(ShareBuzz, bool(std::unique_ptr<Buzz> buzz, int64_t timestamp));
};

Now that we have the mock class defined, we can use it in tests. In the
following code examples, we assume that we have defined a MockBuzzer object
named mock_buzzer_:

 MockBuzzer mock_buzzer_;

First let’s see how we can set expectations on the MakeBuzz() method, which
returns a unique_ptr<Buzz>.

As usual, if you set an expectation without an action (i.e. the .WillOnce() or
.WillRepeated() clause), when that expectation fires, the default action for
that method will be taken. Since unique_ptr<> has a default constructor
that returns a null unique_ptr, that’s what you’ll get if you don’t specify an
action:

 // Use the default action.
 EXPECT_CALL(mock_buzzer_, MakeBuzz("hello"));

 // Triggers the previous EXPECT_CALL.
 EXPECT_EQ(nullptr, mock_buzzer_.MakeBuzz("hello"));

If you are not happy with the default action, you can tweak it as usual; see
Setting Default Actions.

If you just need to return a pre-defined move-only value, you can use the
Return(ByMove(...)) action:

 // When this fires, the unique_ptr<> specified by ByMove(...) will
 // be returned.
 EXPECT_CALL(mock_buzzer_, MakeBuzz("world"))
 .WillOnce(Return(ByMove(MakeUnique<Buzz>(AccessLevel::kInternal))));

 EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("world"));

Note that ByMove() is essential here - if you drop it, the code won’t compile.

Quiz time! What do you think will happen if a Return(ByMove(...)) action is
performed more than once (e.g. you write
.WillRepeatedly(Return(ByMove(...)));)? Come think of it, after the first
time the action runs, the source value will be consumed (since it’s a move-only
value), so the next time around, there’s no value to move from – you’ll get a
run-time error that Return(ByMove(...)) can only be run once.

If you need your mock method to do more than just moving a pre-defined value,
remember that you can always use a lambda or a callable object, which can do
pretty much anything you want:

 EXPECT_CALL(mock_buzzer_, MakeBuzz("x"))
 .WillRepeatedly([](StringPiece text) {
 return MakeUnique<Buzz>(AccessLevel::kInternal);
 });

 EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("x"));
 EXPECT_NE(nullptr, mock_buzzer_.MakeBuzz("x"));

Every time this EXPECT_CALL fires, a new unique_ptr<Buzz> will be
created and returned. You cannot do this with Return(ByMove(...)).

That covers returning move-only values; but how do we work with methods
accepting move-only arguments? The answer is that they work normally, although
some actions will not compile when any of method’s arguments are move-only. You
can always use Return, or a lambda or functor:

 using ::testing::Unused;

 EXPECT_CALL(mock_buzzer_, ShareBuzz(NotNull(), _)) .WillOnce(Return(true));
 EXPECT_TRUE(mock_buzzer_.ShareBuzz(MakeUnique<Buzz>(AccessLevel::kInternal)),
 0);

 EXPECT_CALL(mock_buzzer_, ShareBuzz(_, _)) .WillOnce(
 [](std::unique_ptr<Buzz> buzz, Unused) { return buzz != nullptr; });
 EXPECT_FALSE(mock_buzzer_.ShareBuzz(nullptr, 0));

Many built-in actions (WithArgs, WithoutArgs,DeleteArg, SaveArg, …)
could in principle support move-only arguments, but the support for this is not
implemented yet. If this is blocking you, please file a bug.

A few actions (e.g. DoAll) copy their arguments internally, so they can never
work with non-copyable objects; you’ll have to use functors instead.

Legacy workarounds for move-only types {#LegacyMoveOnly}

Support for move-only function arguments was only introduced to gMock in April

	In older code, you may encounter the following workaround for the lack of
this feature (it is no longer necessary - we’re including it just for
reference):

class MockBuzzer : public Buzzer {
 public:
 MOCK_METHOD2(DoShareBuzz, bool(Buzz* buzz, Time timestamp));
 bool ShareBuzz(std::unique_ptr<Buzz> buzz, Time timestamp) override {
 return DoShareBuzz(buzz.get(), timestamp);
 }
};

The trick is to delegate the ShareBuzz() method to a mock method (let’s call
it DoShareBuzz()) that does not take move-only parameters. Then, instead of
setting expectations on ShareBuzz(), you set them on the DoShareBuzz() mock
method:

 MockBuzzer mock_buzzer_;
 EXPECT_CALL(mock_buzzer_, DoShareBuzz(NotNull(), _));

 // When one calls ShareBuzz() on the MockBuzzer like this, the call is
 // forwarded to DoShareBuzz(), which is mocked. Therefore this statement
 // will trigger the above EXPECT_CALL.
 mock_buzzer_.ShareBuzz(MakeUnique<Buzz>(AccessLevel::kInternal), 0);

Making the Compilation Faster

Believe it or not, the vast majority of the time spent on compiling
a mock class is in generating its constructor and destructor, as they
perform non-trivial tasks (e.g. verification of the
expectations). What’s more, mock methods with different signatures
have different types and thus their constructors/destructors need to
be generated by the compiler separately. As a result, if you mock many
different types of methods, compiling your mock class can get really
slow.

If you are experiencing slow compilation, you can move the definition
of your mock class’ constructor and destructor out of the class body
and into a .cpp file. This way, even if you #include your mock
class in N files, the compiler only needs to generate its constructor
and destructor once, resulting in a much faster compilation.

Let’s illustrate the idea using an example. Here’s the definition of a
mock class before applying this recipe:

// File mock_foo.h.
...
class MockFoo : public Foo {
 public:
 // Since we don't declare the constructor or the destructor,
 // the compiler will generate them in every translation unit
 // where this mock class is used.

 MOCK_METHOD0(DoThis, int());
 MOCK_METHOD1(DoThat, bool(const char* str));
 ... more mock methods ...
};

After the change, it would look like:

// File mock_foo.h.
...
class MockFoo : public Foo {
 public:
 // The constructor and destructor are declared, but not defined, here.
 MockFoo();
 virtual ~MockFoo();

 MOCK_METHOD0(DoThis, int());
 MOCK_METHOD1(DoThat, bool(const char* str));
 ... more mock methods ...
};

and

// File mock_foo.cpp.
#include "path/to/mock_foo.h"

// The definitions may appear trivial, but the functions actually do a
// lot of things through the constructors/destructors of the member
// variables used to implement the mock methods.
MockFoo::MockFoo() {}
MockFoo::~MockFoo() {}

Forcing a Verification

When it’s being destroyed, your friendly mock object will automatically
verify that all expectations on it have been satisfied, and will
generate Google Test failures
if not. This is convenient as it leaves you with one less thing to
worry about. That is, unless you are not sure if your mock object will
be destroyed.

How could it be that your mock object won’t eventually be destroyed?
Well, it might be created on the heap and owned by the code you are
testing. Suppose there’s a bug in that code and it doesn’t delete the
mock object properly - you could end up with a passing test when
there’s actually a bug.

Using a heap checker is a good idea and can alleviate the concern, but
its implementation may not be 100% reliable. So, sometimes you do want
to force Google Mock to verify a mock object before it is
(hopefully) destructed. You can do this with
Mock::VerifyAndClearExpectations(&mock_object):

TEST(MyServerTest, ProcessesRequest) {
 using ::testing::Mock;

 MockFoo* const foo = new MockFoo;
 EXPECT_CALL(*foo, ...)...;
 // ... other expectations ...

 // server now owns foo.
 MyServer server(foo);
 server.ProcessRequest(...);

 // In case that server's destructor will forget to delete foo,
 // this will verify the expectations anyway.
 Mock::VerifyAndClearExpectations(foo);
} // server is destroyed when it goes out of scope here.

Tip: The Mock::VerifyAndClearExpectations() function returns a
bool to indicate whether the verification was successful (true for
yes), so you can wrap that function call inside a ASSERT_TRUE() if
there is no point going further when the verification has failed.

Using Check Points

Sometimes you may want to “reset” a mock object at various check
points in your test: at each check point, you verify that all existing
expectations on the mock object have been satisfied, and then you set
some new expectations on it as if it’s newly created. This allows you
to work with a mock object in “phases” whose sizes are each
manageable.

One such scenario is that in your test’s SetUp() function, you may
want to put the object you are testing into a certain state, with the
help from a mock object. Once in the desired state, you want to clear
all expectations on the mock, such that in the TEST_F body you can
set fresh expectations on it.

As you may have figured out, the Mock::VerifyAndClearExpectations()
function we saw in the previous recipe can help you here. Or, if you
are using ON_CALL() to set default actions on the mock object and
want to clear the default actions as well, use
Mock::VerifyAndClear(&mock_object) instead. This function does what
Mock::VerifyAndClearExpectations(&mock_object) does and returns the
same bool, plus it clears the ON_CALL() statements on
mock_object too.

Another trick you can use to achieve the same effect is to put the
expectations in sequences and insert calls to a dummy “check-point”
function at specific places. Then you can verify that the mock
function calls do happen at the right time. For example, if you are
exercising code:

Foo(1);
Foo(2);
Foo(3);

and want to verify that Foo(1) and Foo(3) both invoke
mock.Bar("a"), but Foo(2) doesn’t invoke anything. You can write:

using ::testing::MockFunction;

TEST(FooTest, InvokesBarCorrectly) {
 MyMock mock;
 // Class MockFunction<F> has exactly one mock method. It is named
 // Call() and has type F.
 MockFunction<void(string check_point_name)> check;
 {
 InSequence s;

 EXPECT_CALL(mock, Bar("a"));
 EXPECT_CALL(check, Call("1"));
 EXPECT_CALL(check, Call("2"));
 EXPECT_CALL(mock, Bar("a"));
 }
 Foo(1);
 check.Call("1");
 Foo(2);
 check.Call("2");
 Foo(3);
}

The expectation spec says that the first Bar("a") must happen before
check point “1”, the second Bar("a") must happen after check point “2”,
and nothing should happen between the two check points. The explicit
check points make it easy to tell which Bar("a") is called by which
call to Foo().

Mocking Destructors

Sometimes you want to make sure a mock object is destructed at the
right time, e.g. after bar->A() is called but before bar->B() is
called. We already know that you can specify constraints on the order
of mock function calls, so all we need to do is to mock the destructor
of the mock function.

This sounds simple, except for one problem: a destructor is a special
function with special syntax and special semantics, and the
MOCK_METHOD0 macro doesn’t work for it:

 MOCK_METHOD0(~MockFoo, void()); // Won't compile!

The good news is that you can use a simple pattern to achieve the same
effect. First, add a mock function Die() to your mock class and call
it in the destructor, like this:

class MockFoo : public Foo {
 ...
 // Add the following two lines to the mock class.
 MOCK_METHOD0(Die, void());
 virtual ~MockFoo() { Die(); }
};

(If the name Die() clashes with an existing symbol, choose another
name.) Now, we have translated the problem of testing when a MockFoo
object dies to testing when its Die() method is called:

 MockFoo* foo = new MockFoo;
 MockBar* bar = new MockBar;
 ...
 {
 InSequence s;

 // Expects *foo to die after bar->A() and before bar->B().
 EXPECT_CALL(*bar, A());
 EXPECT_CALL(*foo, Die());
 EXPECT_CALL(*bar, B());
 }

And that’s that.

Using Google Mock and Threads

IMPORTANT NOTE: What we describe in this recipe is ONLY true on
platforms where Google Mock is thread-safe. Currently these are only
platforms that support the pthreads library (this includes Linux and Mac).
To make it thread-safe on other platforms we only need to implement
some synchronization operations in "gtest/internal/gtest-port.h".

In a unit test, it’s best if you could isolate and test a piece of
code in a single-threaded context. That avoids race conditions and
dead locks, and makes debugging your test much easier.

Yet many programs are multi-threaded, and sometimes to test something
we need to pound on it from more than one thread. Google Mock works
for this purpose too.

Remember the steps for using a mock:

	Create a mock object foo.

	Set its default actions and expectations using ON_CALL() and EXPECT_CALL().

	The code under test calls methods of foo.

	Optionally, verify and reset the mock.

	Destroy the mock yourself, or let the code under test destroy it. The destructor will automatically verify it.

If you follow the following simple rules, your mocks and threads can
live happily together:

	Execute your test code (as opposed to the code being tested) in one thread. This makes your test easy to follow.

	Obviously, you can do step #1 without locking.

	When doing step #2 and #5, make sure no other thread is accessing foo. Obvious too, huh?

	#3 and #4 can be done either in one thread or in multiple threads - anyway you want. Google Mock takes care of the locking, so you don’t have to do any - unless required by your test logic.

If you violate the rules (for example, if you set expectations on a
mock while another thread is calling its methods), you get undefined
behavior. That’s not fun, so don’t do it.

Google Mock guarantees that the action for a mock function is done in
the same thread that called the mock function. For example, in

 EXPECT_CALL(mock, Foo(1))
 .WillOnce(action1);
 EXPECT_CALL(mock, Foo(2))
 .WillOnce(action2);

if Foo(1) is called in thread 1 and Foo(2) is called in thread 2,
Google Mock will execute action1 in thread 1 and action2 in thread

	

Google Mock does not impose a sequence on actions performed in
different threads (doing so may create deadlocks as the actions may
need to cooperate). This means that the execution of action1 and
action2 in the above example may interleave. If this is a problem,
you should add proper synchronization logic to action1 and action2
to make the test thread-safe.

Also, remember that DefaultValue<T> is a global resource that
potentially affects all living mock objects in your
program. Naturally, you won’t want to mess with it from multiple
threads or when there still are mocks in action.

Controlling How Much Information Google Mock Prints

When Google Mock sees something that has the potential of being an
error (e.g. a mock function with no expectation is called, a.k.a. an
uninteresting call, which is allowed but perhaps you forgot to
explicitly ban the call), it prints some warning messages, including
the arguments of the function and the return value. Hopefully this
will remind you to take a look and see if there is indeed a problem.

Sometimes you are confident that your tests are correct and may not
appreciate such friendly messages. Some other times, you are debugging
your tests or learning about the behavior of the code you are testing,
and wish you could observe every mock call that happens (including
argument values and the return value). Clearly, one size doesn’t fit
all.

You can control how much Google Mock tells you using the
--gmock_verbose=LEVEL command-line flag, where LEVEL is a string
with three possible values:

	info: Google Mock will print all informational messages, warnings, and errors (most verbose). At this setting, Google Mock will also log any calls to the ON_CALL/EXPECT_CALL macros.

	warning: Google Mock will print both warnings and errors (less verbose). This is the default.

	error: Google Mock will print errors only (least verbose).

Alternatively, you can adjust the value of that flag from within your
tests like so:

 ::testing::FLAGS_gmock_verbose = "error";

Now, judiciously use the right flag to enable Google Mock serve you better!

Gaining Super Vision into Mock Calls

You have a test using Google Mock. It fails: Google Mock tells you
that some expectations aren’t satisfied. However, you aren’t sure why:
Is there a typo somewhere in the matchers? Did you mess up the order
of the EXPECT_CALLs? Or is the code under test doing something
wrong? How can you find out the cause?

Won’t it be nice if you have X-ray vision and can actually see the
trace of all EXPECT_CALLs and mock method calls as they are made?
For each call, would you like to see its actual argument values and
which EXPECT_CALL Google Mock thinks it matches?

You can unlock this power by running your test with the
--gmock_verbose=info flag. For example, given the test program:

using testing::_;
using testing::HasSubstr;
using testing::Return;

class MockFoo {
 public:
 MOCK_METHOD2(F, void(const string& x, const string& y));
};

TEST(Foo, Bar) {
 MockFoo mock;
 EXPECT_CALL(mock, F(_, _)).WillRepeatedly(Return());
 EXPECT_CALL(mock, F("a", "b"));
 EXPECT_CALL(mock, F("c", HasSubstr("d")));

 mock.F("a", "good");
 mock.F("a", "b");
}

if you run it with --gmock_verbose=info, you will see this output:

[RUN] Foo.Bar

foo_test.cc:14: EXPECT_CALL(mock, F(_, _)) invoked
foo_test.cc:15: EXPECT_CALL(mock, F("a", "b")) invoked
foo_test.cc:16: EXPECT_CALL(mock, F("c", HasSubstr("d"))) invoked
foo_test.cc:14: Mock function call matches EXPECT_CALL(mock, F(_, _))...
 Function call: F(@0x7fff7c8dad40"a", @0x7fff7c8dad10"good")
foo_test.cc:15: Mock function call matches EXPECT_CALL(mock, F("a", "b"))...
 Function call: F(@0x7fff7c8dada0"a", @0x7fff7c8dad70"b")
foo_test.cc:16: Failure
Actual function call count doesn't match EXPECT_CALL(mock, F("c", HasSubstr("d")))...
 Expected: to be called once
 Actual: never called - unsatisfied and active
[FAILED] Foo.Bar

Suppose the bug is that the "c" in the third EXPECT_CALL is a typo
and should actually be "a". With the above message, you should see
that the actual F("a", "good") call is matched by the first
EXPECT_CALL, not the third as you thought. From that it should be
obvious that the third EXPECT_CALL is written wrong. Case solved.

Running Tests in Emacs

If you build and run your tests in Emacs, the source file locations of
Google Mock and Google Test
errors will be highlighted. Just press <Enter> on one of them and
you’ll be taken to the offending line. Or, you can just type `C-x ``
to jump to the next error.

To make it even easier, you can add the following lines to your
~/.emacs file:

(global-set-key "\M-m" 'compile) ; m is for make
(global-set-key [M-down] 'next-error)
(global-set-key [M-up] '(lambda () (interactive) (next-error -1)))

Then you can type M-m to start a build, or M-up/M-down to move
back and forth between errors.

Fusing Google Mock Source Files

Google Mock’s implementation consists of dozens of files (excluding
its own tests). Sometimes you may want them to be packaged up in
fewer files instead, such that you can easily copy them to a new
machine and start hacking there. For this we provide an experimental
Python script fuse_gmock_files.py in the scripts/ directory
(starting with release 1.2.0). Assuming you have Python 2.4 or above
installed on your machine, just go to that directory and run

python fuse_gmock_files.py OUTPUT_DIR

and you should see an OUTPUT_DIR directory being created with files
gtest/gtest.h, gmock/gmock.h, and gmock-gtest-all.cc in it.
These three files contain everything you need to use Google Mock (and
Google Test). Just copy them to anywhere you want and you are ready
to write tests and use mocks. You can use the
scrpts/test/Makefile file as an example on how to compile your tests
against them.

Extending Google Mock

Writing New Matchers Quickly

The MATCHER* family of macros can be used to define custom matchers
easily. The syntax:

MATCHER(name, description_string_expression) { statements; }

will define a matcher with the given name that executes the
statements, which must return a bool to indicate if the match
succeeds. Inside the statements, you can refer to the value being
matched by arg, and refer to its type by arg_type.

The description string is a string-typed expression that documents
what the matcher does, and is used to generate the failure message
when the match fails. It can (and should) reference the special
bool variable negation, and should evaluate to the description of
the matcher when negation is false, or that of the matcher’s
negation when negation is true.

For convenience, we allow the description string to be empty (""),
in which case Google Mock will use the sequence of words in the
matcher name as the description.

For example:

MATCHER(IsDivisibleBy7, "") { return (arg % 7) == 0; }

allows you to write

 // Expects mock_foo.Bar(n) to be called where n is divisible by 7.
 EXPECT_CALL(mock_foo, Bar(IsDivisibleBy7()));

or,

using ::testing::Not;
...
 EXPECT_THAT(some_expression, IsDivisibleBy7());
 EXPECT_THAT(some_other_expression, Not(IsDivisibleBy7()));

If the above assertions fail, they will print something like:

 Value of: some_expression
 Expected: is divisible by 7
 Actual: 27
...
 Value of: some_other_expression
 Expected: not (is divisible by 7)
 Actual: 21

where the descriptions "is divisible by 7" and "not (is divisible by 7)" are automatically calculated from the matcher name
IsDivisibleBy7.

As you may have noticed, the auto-generated descriptions (especially
those for the negation) may not be so great. You can always override
them with a string expression of your own:

MATCHER(IsDivisibleBy7, std::string(negation ? "isn't" : "is") +
 " divisible by 7") {
 return (arg % 7) == 0;
}

Optionally, you can stream additional information to a hidden argument
named result_listener to explain the match result. For example, a
better definition of IsDivisibleBy7 is:

MATCHER(IsDivisibleBy7, "") {
 if ((arg % 7) == 0)
 return true;

 *result_listener << "the remainder is " << (arg % 7);
 return false;
}

With this definition, the above assertion will give a better message:

 Value of: some_expression
 Expected: is divisible by 7
 Actual: 27 (the remainder is 6)

You should let MatchAndExplain() print any additional information
that can help a user understand the match result. Note that it should
explain why the match succeeds in case of a success (unless it’s
obvious) - this is useful when the matcher is used inside
Not(). There is no need to print the argument value itself, as
Google Mock already prints it for you.

Notes:

	The type of the value being matched (arg_type) is determined by the context in which you use the matcher and is supplied to you by the compiler, so you don’t need to worry about declaring it (nor can you). This allows the matcher to be polymorphic. For example, IsDivisibleBy7() can be used to match any type where the value of (arg % 7) == 0 can be implicitly converted to a bool. In the Bar(IsDivisibleBy7()) example above, if method Bar() takes an int, arg_type will be int; if it takes an unsigned long, arg_type will be unsigned long; and so on.

	Google Mock doesn’t guarantee when or how many times a matcher will be invoked. Therefore the matcher logic must be purely functional (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters). This requirement must be satisfied no matter how you define the matcher (e.g. using one of the methods described in the following recipes). In particular, a matcher can never call a mock function, as that will affect the state of the mock object and Google Mock.

Writing New Parameterized Matchers Quickly

Sometimes you’ll want to define a matcher that has parameters. For that you
can use the macro:

MATCHER_P(name, param_name, description_string) { statements; }

where the description string can be either "" or a string expression
that references negation and param_name.

For example:

MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }

will allow you to write:

 EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));

which may lead to this message (assuming n is 10):

 Value of: Blah("a")
 Expected: has absolute value 10
 Actual: -9

Note that both the matcher description and its parameter are
printed, making the message human-friendly.

In the matcher definition body, you can write foo_type to
reference the type of a parameter named foo. For example, in the
body of MATCHER_P(HasAbsoluteValue, value) above, you can write
value_type to refer to the type of value.

Google Mock also provides MATCHER_P2, MATCHER_P3, …, up to
MATCHER_P10 to support multi-parameter matchers:

MATCHER_Pk(name, param_1, ..., param_k, description_string) { statements; }

Please note that the custom description string is for a particular
instance of the matcher, where the parameters have been bound to
actual values. Therefore usually you’ll want the parameter values to
be part of the description. Google Mock lets you do that by
referencing the matcher parameters in the description string
expression.

For example,

 using ::testing::PrintToString;
 MATCHER_P2(InClosedRange, low, hi,
 std::string(negation ? "isn't" : "is") + " in range [" +
 PrintToString(low) + ", " + PrintToString(hi) + "]") {
 return low <= arg && arg <= hi;
 }
 ...
 EXPECT_THAT(3, InClosedRange(4, 6));

would generate a failure that contains the message:

 Expected: is in range [4, 6]

If you specify "" as the description, the failure message will
contain the sequence of words in the matcher name followed by the
parameter values printed as a tuple. For example,

 MATCHER_P2(InClosedRange, low, hi, "") { ... }
 ...
 EXPECT_THAT(3, InClosedRange(4, 6));

would generate a failure that contains the text:

 Expected: in closed range (4, 6)

For the purpose of typing, you can view

MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }

as shorthand for

template <typename p1_type, ..., typename pk_type>
FooMatcherPk<p1_type, ..., pk_type>
Foo(p1_type p1, ..., pk_type pk) { ... }

When you write Foo(v1, ..., vk), the compiler infers the types of
the parameters v1, …, and vk for you. If you are not happy with
the result of the type inference, you can specify the types by
explicitly instantiating the template, as in Foo<long, bool>(5, false).
As said earlier, you don’t get to (or need to) specify
arg_type as that’s determined by the context in which the matcher
is used.

You can assign the result of expression Foo(p1, ..., pk) to a
variable of type FooMatcherPk<p1_type, ..., pk_type>. This can be
useful when composing matchers. Matchers that don’t have a parameter
or have only one parameter have special types: you can assign Foo()
to a FooMatcher-typed variable, and assign Foo(p) to a
FooMatcherP<p_type>-typed variable.

While you can instantiate a matcher template with reference types,
passing the parameters by pointer usually makes your code more
readable. If, however, you still want to pass a parameter by
reference, be aware that in the failure message generated by the
matcher you will see the value of the referenced object but not its
address.

You can overload matchers with different numbers of parameters:

MATCHER_P(Blah, a, description_string_1) { ... }
MATCHER_P2(Blah, a, b, description_string_2) { ... }

While it’s tempting to always use the MATCHER* macros when defining
a new matcher, you should also consider implementing
MatcherInterface or using MakePolymorphicMatcher() instead (see
the recipes that follow), especially if you need to use the matcher a
lot. While these approaches require more work, they give you more
control on the types of the value being matched and the matcher
parameters, which in general leads to better compiler error messages
that pay off in the long run. They also allow overloading matchers
based on parameter types (as opposed to just based on the number of
parameters).

Writing New Monomorphic Matchers

A matcher of argument type T implements
::testing::MatcherInterface<T> and does two things: it tests whether a
value of type T matches the matcher, and can describe what kind of
values it matches. The latter ability is used for generating readable
error messages when expectations are violated.

The interface looks like this:

class MatchResultListener {
 public:
 ...
 // Streams x to the underlying ostream; does nothing if the ostream
 // is NULL.
 template <typename T>
 MatchResultListener& operator<<(const T& x);

 // Returns the underlying ostream.
 ::std::ostream* stream();
};

template <typename T>
class MatcherInterface {
 public:
 virtual ~MatcherInterface();

 // Returns true iff the matcher matches x; also explains the match
 // result to 'listener'.
 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;

 // Describes this matcher to an ostream.
 virtual void DescribeTo(::std::ostream* os) const = 0;

 // Describes the negation of this matcher to an ostream.
 virtual void DescribeNegationTo(::std::ostream* os) const;
};

If you need a custom matcher but Truly() is not a good option (for
example, you may not be happy with the way Truly(predicate)
describes itself, or you may want your matcher to be polymorphic as
Eq(value) is), you can define a matcher to do whatever you want in
two steps: first implement the matcher interface, and then define a
factory function to create a matcher instance. The second step is not
strictly needed but it makes the syntax of using the matcher nicer.

For example, you can define a matcher to test whether an int is
divisible by 7 and then use it like this:

using ::testing::MakeMatcher;
using ::testing::Matcher;
using ::testing::MatcherInterface;
using ::testing::MatchResultListener;

class DivisibleBy7Matcher : public MatcherInterface<int> {
 public:
 virtual bool MatchAndExplain(int n, MatchResultListener* listener) const {
 return (n % 7) == 0;
 }

 virtual void DescribeTo(::std::ostream* os) const {
 *os << "is divisible by 7";
 }

 virtual void DescribeNegationTo(::std::ostream* os) const {
 *os << "is not divisible by 7";
 }
};

inline Matcher<int> DivisibleBy7() {
 return MakeMatcher(new DivisibleBy7Matcher);
}
...

 EXPECT_CALL(foo, Bar(DivisibleBy7()));

You may improve the matcher message by streaming additional
information to the listener argument in MatchAndExplain():

class DivisibleBy7Matcher : public MatcherInterface<int> {
 public:
 virtual bool MatchAndExplain(int n,
 MatchResultListener* listener) const {
 const int remainder = n % 7;
 if (remainder != 0) {
 *listener << "the remainder is " << remainder;
 }
 return remainder == 0;
 }
 ...
};

Then, EXPECT_THAT(x, DivisibleBy7()); may general a message like this:

Value of: x
Expected: is divisible by 7
 Actual: 23 (the remainder is 2)

Writing New Polymorphic Matchers

You’ve learned how to write your own matchers in the previous
recipe. Just one problem: a matcher created using MakeMatcher() only
works for one particular type of arguments. If you want a
polymorphic matcher that works with arguments of several types (for
instance, Eq(x) can be used to match a value as long as value ==
x compiles – value and x don’t have to share the same type),
you can learn the trick from "gmock/gmock-matchers.h" but it’s a bit
involved.

Fortunately, most of the time you can define a polymorphic matcher
easily with the help of MakePolymorphicMatcher(). Here’s how you can
define NotNull() as an example:

using ::testing::MakePolymorphicMatcher;
using ::testing::MatchResultListener;
using ::testing::NotNull;
using ::testing::PolymorphicMatcher;

class NotNullMatcher {
 public:
 // To implement a polymorphic matcher, first define a COPYABLE class
 // that has three members MatchAndExplain(), DescribeTo(), and
 // DescribeNegationTo(), like the following.

 // In this example, we want to use NotNull() with any pointer, so
 // MatchAndExplain() accepts a pointer of any type as its first argument.
 // In general, you can define MatchAndExplain() as an ordinary method or
 // a method template, or even overload it.
 template <typename T>
 bool MatchAndExplain(T* p,
 MatchResultListener* /* listener */) const {
 return p != NULL;
 }

 // Describes the property of a value matching this matcher.
 void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }

 // Describes the property of a value NOT matching this matcher.
 void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
};

// To construct a polymorphic matcher, pass an instance of the class
// to MakePolymorphicMatcher(). Note the return type.
inline PolymorphicMatcher<NotNullMatcher> NotNull() {
 return MakePolymorphicMatcher(NotNullMatcher());
}
...

 EXPECT_CALL(foo, Bar(NotNull())); // The argument must be a non-NULL pointer.

Note: Your polymorphic matcher class does not need to inherit from
MatcherInterface or any other class, and its methods do not need
to be virtual.

Like in a monomorphic matcher, you may explain the match result by
streaming additional information to the listener argument in
MatchAndExplain().

Writing New Cardinalities

A cardinality is used in Times() to tell Google Mock how many times
you expect a call to occur. It doesn’t have to be exact. For example,
you can say AtLeast(5) or Between(2, 4).

If the built-in set of cardinalities doesn’t suit you, you are free to
define your own by implementing the following interface (in namespace
testing):

class CardinalityInterface {
 public:
 virtual ~CardinalityInterface();

 // Returns true iff call_count calls will satisfy this cardinality.
 virtual bool IsSatisfiedByCallCount(int call_count) const = 0;

 // Returns true iff call_count calls will saturate this cardinality.
 virtual bool IsSaturatedByCallCount(int call_count) const = 0;

 // Describes self to an ostream.
 virtual void DescribeTo(::std::ostream* os) const = 0;
};

For example, to specify that a call must occur even number of times,
you can write

using ::testing::Cardinality;
using ::testing::CardinalityInterface;
using ::testing::MakeCardinality;

class EvenNumberCardinality : public CardinalityInterface {
 public:
 virtual bool IsSatisfiedByCallCount(int call_count) const {
 return (call_count % 2) == 0;
 }

 virtual bool IsSaturatedByCallCount(int call_count) const {
 return false;
 }

 virtual void DescribeTo(::std::ostream* os) const {
 *os << "called even number of times";
 }
};

Cardinality EvenNumber() {
 return MakeCardinality(new EvenNumberCardinality);
}
...

 EXPECT_CALL(foo, Bar(3))
 .Times(EvenNumber());

Writing New Actions Quickly

If the built-in actions don’t work for you, and you find it
inconvenient to use Invoke(), you can use a macro from the ACTION*
family to quickly define a new action that can be used in your code as
if it’s a built-in action.

By writing

ACTION(name) { statements; }

in a namespace scope (i.e. not inside a class or function), you will
define an action with the given name that executes the statements.
The value returned by statements will be used as the return value of
the action. Inside the statements, you can refer to the K-th
(0-based) argument of the mock function as argK. For example:

ACTION(IncrementArg1) { return ++(*arg1); }

allows you to write

... WillOnce(IncrementArg1());

Note that you don’t need to specify the types of the mock function
arguments. Rest assured that your code is type-safe though:
you’ll get a compiler error if *arg1 doesn’t support the ++
operator, or if the type of ++(*arg1) isn’t compatible with the mock
function’s return type.

Another example:

ACTION(Foo) {
 (*arg2)(5);
 Blah();
 *arg1 = 0;
 return arg0;
}

defines an action Foo() that invokes argument #2 (a function pointer)
with 5, calls function Blah(), sets the value pointed to by argument
#1 to 0, and returns argument #0.

For more convenience and flexibility, you can also use the following
pre-defined symbols in the body of ACTION:

argK_type	The type of the K-th (0-based) argument of the mock function
:————	:————————————————————-
args	All arguments of the mock function as a tuple
args_type	The type of all arguments of the mock function as a tuple
return_type	The return type of the mock function
function_type	The type of the mock function

For example, when using an ACTION as a stub action for mock function:

int DoSomething(bool flag, int* ptr);

we have:

Pre-defined Symbol	Is Bound To
:———————–	:—————-
arg0	the value of flag
arg0_type	the type bool
arg1	the value of ptr
arg1_type	the type int*
args	the tuple (flag, ptr)
args_type	the type ::testing::tuple<bool, int*>
return_type	the type int
function_type	the type int(bool, int*)

Writing New Parameterized Actions Quickly

Sometimes you’ll want to parameterize an action you define. For that
we have another macro

ACTION_P(name, param) { statements; }

For example,

ACTION_P(Add, n) { return arg0 + n; }

will allow you to write

// Returns argument #0 + 5.
... WillOnce(Add(5));

For convenience, we use the term arguments for the values used to
invoke the mock function, and the term parameters for the values
used to instantiate an action.

Note that you don’t need to provide the type of the parameter either.
Suppose the parameter is named param, you can also use the
Google-Mock-defined symbol param_type to refer to the type of the
parameter as inferred by the compiler. For example, in the body of
ACTION_P(Add, n) above, you can write n_type for the type of n.

Google Mock also provides ACTION_P2, ACTION_P3, and etc to support
multi-parameter actions. For example,

ACTION_P2(ReturnDistanceTo, x, y) {
 double dx = arg0 - x;
 double dy = arg1 - y;
 return sqrt(dx*dx + dy*dy);
}

lets you write

... WillOnce(ReturnDistanceTo(5.0, 26.5));

You can view ACTION as a degenerated parameterized action where the
number of parameters is 0.

You can also easily define actions overloaded on the number of parameters:

ACTION_P(Plus, a) { ... }
ACTION_P2(Plus, a, b) { ... }

Restricting the Type of an Argument or Parameter in an ACTION

For maximum brevity and reusability, the ACTION* macros don’t ask
you to provide the types of the mock function arguments and the action
parameters. Instead, we let the compiler infer the types for us.

Sometimes, however, we may want to be more explicit about the types.
There are several tricks to do that. For example:

ACTION(Foo) {
 // Makes sure arg0 can be converted to int.
 int n = arg0;
 ... use n instead of arg0 here ...
}

ACTION_P(Bar, param) {
 // Makes sure the type of arg1 is const char*.
 ::testing::StaticAssertTypeEq<const char*, arg1_type>();

 // Makes sure param can be converted to bool.
 bool flag = param;
}

where StaticAssertTypeEq is a compile-time assertion in Google Test
that verifies two types are the same.

Writing New Action Templates Quickly

Sometimes you want to give an action explicit template parameters that
cannot be inferred from its value parameters. ACTION_TEMPLATE()
supports that and can be viewed as an extension to ACTION() and
ACTION_P*().

The syntax:

ACTION_TEMPLATE(ActionName,
 HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
 AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }

defines an action template that takes m explicit template parameters
and n value parameters, where m is between 1 and 10, and n is
between 0 and 10. name_i is the name of the i-th template
parameter, and kind_i specifies whether it’s a typename, an
integral constant, or a template. p_i is the name of the i-th value
parameter.

Example:

// DuplicateArg<k, T>(output) converts the k-th argument of the mock
// function to type T and copies it to *output.
ACTION_TEMPLATE(DuplicateArg,
 // Note the comma between int and k:
 HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
 AND_1_VALUE_PARAMS(output)) {
 *output = T(::testing::get<k>(args));
}

To create an instance of an action template, write:

 ActionName<t1, ..., t_m>(v1, ..., v_n)

where the ts are the template arguments and the
vs are the value arguments. The value argument
types are inferred by the compiler. For example:

using ::testing::_;
...
 int n;
 EXPECT_CALL(mock, Foo(_, _))
 .WillOnce(DuplicateArg<1, unsigned char>(&n));

If you want to explicitly specify the value argument types, you can
provide additional template arguments:

 ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)

where u_i is the desired type of v_i.

ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
number of value parameters, but not on the number of template
parameters. Without the restriction, the meaning of the following is
unclear:

 OverloadedAction<int, bool>(x);

Are we using a single-template-parameter action where bool refers to
the type of x, or a two-template-parameter action where the compiler
is asked to infer the type of x?

Using the ACTION Object’s Type

If you are writing a function that returns an ACTION object, you’ll
need to know its type. The type depends on the macro used to define
the action and the parameter types. The rule is relatively simple:

Given Definition	Expression	Has Type
:———————	:—————	:————-
ACTION(Foo)	Foo()	FooAction
ACTION_TEMPLATE(Foo, HAS_m_TEMPLATE_PARAMS(...), AND_0_VALUE_PARAMS())	Foo<t1, ..., t_m>()	FooAction<t1, ..., t_m>
ACTION_P(Bar, param)	Bar(int_value)	BarActionP<int>
ACTION_TEMPLATE(Bar, HAS_m_TEMPLATE_PARAMS(...), AND_1_VALUE_PARAMS(p1))	Bar<t1, ..., t_m>(int_value)	FooActionP<t1, ..., t_m, int>
ACTION_P2(Baz, p1, p2)	Baz(bool_value, int_value)	BazActionP2<bool, int>
ACTION_TEMPLATE(Baz, HAS_m_TEMPLATE_PARAMS(...), AND_2_VALUE_PARAMS(p1, p2))	Baz<t1, ..., t_m>(bool_value, int_value)	FooActionP2<t1, ..., t_m, bool, int>
…	…	…

Note that we have to pick different suffixes (Action, ActionP,
ActionP2, and etc) for actions with different numbers of value
parameters, or the action definitions cannot be overloaded on the
number of them.

Writing New Monomorphic Actions

While the ACTION* macros are very convenient, sometimes they are
inappropriate. For example, despite the tricks shown in the previous
recipes, they don’t let you directly specify the types of the mock
function arguments and the action parameters, which in general leads
to unoptimized compiler error messages that can baffle unfamiliar
users. They also don’t allow overloading actions based on parameter
types without jumping through some hoops.

An alternative to the ACTION* macros is to implement
::testing::ActionInterface<F>, where F is the type of the mock
function in which the action will be used. For example:

template <typename F>class ActionInterface {
 public:
 virtual ~ActionInterface();

 // Performs the action. Result is the return type of function type
 // F, and ArgumentTuple is the tuple of arguments of F.
 //
 // For example, if F is int(bool, const string&), then Result would
 // be int, and ArgumentTuple would be ::testing::tuple<bool, const string&>.
 virtual Result Perform(const ArgumentTuple& args) = 0;
};

using ::testing::_;
using ::testing::Action;
using ::testing::ActionInterface;
using ::testing::MakeAction;

typedef int IncrementMethod(int*);

class IncrementArgumentAction : public ActionInterface<IncrementMethod> {
 public:
 virtual int Perform(const ::testing::tuple<int*>& args) {
 int* p = ::testing::get<0>(args); // Grabs the first argument.
 return *p++;
 }
};

Action<IncrementMethod> IncrementArgument() {
 return MakeAction(new IncrementArgumentAction);
}
...

 EXPECT_CALL(foo, Baz(_))
 .WillOnce(IncrementArgument());

 int n = 5;
 foo.Baz(&n); // Should return 5 and change n to 6.

Writing New Polymorphic Actions

The previous recipe showed you how to define your own action. This is
all good, except that you need to know the type of the function in
which the action will be used. Sometimes that can be a problem. For
example, if you want to use the action in functions with different
types (e.g. like Return() and SetArgPointee()).

If an action can be used in several types of mock functions, we say
it’s polymorphic. The MakePolymorphicAction() function template
makes it easy to define such an action:

namespace testing {

template <typename Impl>
PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl);

} // namespace testing

As an example, let’s define an action that returns the second argument
in the mock function’s argument list. The first step is to define an
implementation class:

class ReturnSecondArgumentAction {
 public:
 template <typename Result, typename ArgumentTuple>
 Result Perform(const ArgumentTuple& args) const {
 // To get the i-th (0-based) argument, use ::testing::get<i>(args).
 return ::testing::get<1>(args);
 }
};

This implementation class does not need to inherit from any
particular class. What matters is that it must have a Perform()
method template. This method template takes the mock function’s
arguments as a tuple in a single argument, and returns the result of
the action. It can be either const or not, but must be invokable
with exactly one template argument, which is the result type. In other
words, you must be able to call Perform<R>(args) where R is the
mock function’s return type and args is its arguments in a tuple.

Next, we use MakePolymorphicAction() to turn an instance of the
implementation class into the polymorphic action we need. It will be
convenient to have a wrapper for this:

using ::testing::MakePolymorphicAction;
using ::testing::PolymorphicAction;

PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
 return MakePolymorphicAction(ReturnSecondArgumentAction());
}

Now, you can use this polymorphic action the same way you use the
built-in ones:

using ::testing::_;

class MockFoo : public Foo {
 public:
 MOCK_METHOD2(DoThis, int(bool flag, int n));
 MOCK_METHOD3(DoThat, string(int x, const char* str1, const char* str2));
};
...

 MockFoo foo;
 EXPECT_CALL(foo, DoThis(_, _))
 .WillOnce(ReturnSecondArgument());
 EXPECT_CALL(foo, DoThat(_, _, _))
 .WillOnce(ReturnSecondArgument());
 ...
 foo.DoThis(true, 5); // Will return 5.
 foo.DoThat(1, "Hi", "Bye"); // Will return "Hi".

Teaching Google Mock How to Print Your Values

When an uninteresting or unexpected call occurs, Google Mock prints the
argument values and the stack trace to help you debug. Assertion
macros like EXPECT_THAT and EXPECT_EQ also print the values in
question when the assertion fails. Google Mock and Google Test do this using
Google Test’s user-extensible value printer.

This printer knows how to print built-in C++ types, native arrays, STL
containers, and any type that supports the << operator. For other
types, it prints the raw bytes in the value and hopes that you the
user can figure it out.
Google Test’s advanced guide
explains how to extend the printer to do a better job at
printing your particular type than to dump the bytes.

 Macros for Defining Actions

 This page discusses the design of new Google Mock features.

Macros for Defining Actions

Problem

Due to the lack of closures in C++, it currently requires some
non-trivial effort to define a custom action in Google Mock. For
example, suppose you want to “increment the value pointed to by the
second argument of the mock function and return it”, you could write:

int IncrementArg1(Unused, int* p, Unused) {
 return ++(*p);
}

... WillOnce(Invoke(IncrementArg1));

There are several things unsatisfactory about this approach:

	Even though the action only cares about the second argument of the mock function, its definition needs to list other arguments as dummies. This is tedious.

	The defined action is usable only in mock functions that takes exactly 3 arguments - an unnecessary restriction.

	To use the action, one has to say Invoke(IncrementArg1), which isn’t as nice as IncrementArg1().

The latter two problems can be overcome using MakePolymorphicAction(),
but it requires much more boilerplate code:

class IncrementArg1Action {
 public:
 template <typename Result, typename ArgumentTuple>
 Result Perform(const ArgumentTuple& args) const {
 return ++(*tr1::get<1>(args));
 }
};

PolymorphicAction<IncrementArg1Action> IncrementArg1() {
 return MakePolymorphicAction(IncrementArg1Action());
}

... WillOnce(IncrementArg1());

Our goal is to allow defining custom actions with the least amount of
boiler-plate C++ requires.

Solution

We propose to introduce a new macro:

ACTION(name) { statements; }

Using this in a namespace scope will define an action with the given
name that executes the statements. Inside the statements, you can
refer to the K-th (0-based) argument of the mock function as argK.
For example:

ACTION(IncrementArg1) { return ++(*arg1); }

allows you to write

... WillOnce(IncrementArg1());

Note that you don’t need to specify the types of the mock function
arguments, as brevity is a top design goal here. Rest assured that
your code is still type-safe though: you’ll get a compiler error if
*arg1 doesn’t support the ++ operator, or if the type of
++(*arg1) isn’t compatible with the mock function’s return type.

Another example:

ACTION(Foo) {
 (*arg2)(5);
 Blah();
 *arg1 = 0;
 return arg0;
}

defines an action Foo() that invokes argument #2 (a function pointer)
with 5, calls function Blah(), sets the value pointed to by argument
#1 to 0, and returns argument #0.

For more convenience and flexibility, you can also use the following
pre-defined symbols in the body of ACTION:

argK_type	The type of the K-th (0-based) argument of the mock function
:————	:————————————————————-
args	All arguments of the mock function as a tuple
args_type	The type of all arguments of the mock function as a tuple
return_type	The return type of the mock function
function_type	The type of the mock function

For example, when using an ACTION as a stub action for mock function:

int DoSomething(bool flag, int* ptr);

we have:
Pre-defined Symbol	Is Bound To
:———————–	:—————-
arg0	the value of flag
arg0_type	the type bool
arg1	the value of ptr
arg1_type	the type int*
args	the tuple (flag, ptr)
args_type	the type std::tr1::tuple<bool, int*>
return_type	the type int
function_type	the type int(bool, int*)

Parameterized actions

Sometimes you’ll want to parameterize the action. For that we propose
another macro

ACTION_P(name, param) { statements; }

For example,

ACTION_P(Add, n) { return arg0 + n; }

will allow you to write

// Returns argument #0 + 5.
... WillOnce(Add(5));

For convenience, we use the term arguments for the values used to
invoke the mock function, and the term parameters for the values
used to instantiate an action.

Note that you don’t need to provide the type of the parameter either.
Suppose the parameter is named param, you can also use the
Google-Mock-defined symbol param_type to refer to the type of the
parameter as inferred by the compiler.

We will also provide ACTION_P2, ACTION_P3, and etc to support
multi-parameter actions. For example,

ACTION_P2(ReturnDistanceTo, x, y) {
 double dx = arg0 - x;
 double dy = arg1 - y;
 return sqrt(dx*dx + dy*dy);
}

lets you write

... WillOnce(ReturnDistanceTo(5.0, 26.5));

You can view ACTION as a degenerated parameterized action where the
number of parameters is 0.

Advanced Usages

Overloading Actions

You can easily define actions overloaded on the number of parameters:

ACTION_P(Plus, a) { ... }
ACTION_P2(Plus, a, b) { ... }

Restricting the Type of an Argument or Parameter

For maximum brevity and reusability, the ACTION* macros don’t let
you specify the types of the mock function arguments and the action
parameters. Instead, we let the compiler infer the types for us.

Sometimes, however, we may want to be more explicit about the types.
There are several tricks to do that. For example:

ACTION(Foo) {
 // Makes sure arg0 can be converted to int.
 int n = arg0;
 ... use n instead of arg0 here ...
}

ACTION_P(Bar, param) {
 // Makes sure the type of arg1 is const char*.
 ::testing::StaticAssertTypeEq<const char*, arg1_type>();

 // Makes sure param can be converted to bool.
 bool flag = param;
}

where StaticAssertTypeEq is a compile-time assertion we plan to add to
Google Test (the name is chosen to match static_assert in C++0x).

Using the ACTION Object’s Type

If you are writing a function that returns an ACTION object, you’ll
need to know its type. The type depends on the macro used to define
the action and the parameter types. The rule is relatively simple:
Given Definition	Expression	Has Type
:———————	:—————	:————-
ACTION(Foo)	Foo()	FooAction
ACTION_P(Bar, param)	Bar(int_value)	BarActionP<int>
ACTION_P2(Baz, p1, p2)	Baz(bool_value, int_value)	BazActionP2<bool, int>
…	…	…

Note that we have to pick different suffixes (Action, ActionP,
ActionP2, and etc) for actions with different numbers of parameters,
or the action definitions cannot be overloaded on the number of
parameters.

When to Use

While the new macros are very convenient, please also consider other
means of implementing actions (e.g. via ActionInterface or
MakePolymorphicAction()), especially if you need to use the defined
action a lot. While the other approaches require more work, they give
you more control on the types of the mock function arguments and the
action parameters, which in general leads to better compiler error
messages that pay off in the long run. They also allow overloading
actions based on parameter types, as opposed to just the number of
parameters.

Related Work

As you may have realized, the ACTION* macros resemble closures (also
known as lambda expressions or anonymous functions). Indeed, both of
them seek to lower the syntactic overhead for defining a function.

C++0x will support lambdas, but they are not part of C++ right now.
Some non-standard libraries (most notably BLL or Boost Lambda Library)
try to alleviate this problem. However, they are not a good choice
for defining actions as:

	They are non-standard and not widely installed. Google Mock only depends on standard libraries and tr1::tuple, which is part of the new C++ standard and comes with gcc 4+. We want to keep it that way.

	They are not trivial to learn.

	They will become obsolete when C++0x’s lambda feature is widely supported. We don’t want to make our users use a dying library.

	Since they are based on operators, they are rather ad hoc: you cannot use statements, and you cannot pass the lambda arguments to a function, for example.

	They have subtle semantics that easily confuses new users. For example, in expression _1++ + foo++, foo will be incremented only once where the expression is evaluated, while _1 will be incremented every time the unnamed function is invoked. This is far from intuitive.

ACTION* avoid all these problems.

Future Improvements

There may be a need for composing ACTION* definitions (i.e. invoking
another ACTION inside the definition of one ACTION*). We are not
sure we want it yet, as one can get a similar effect by putting
ACTION definitions in function templates and composing the function
templates. We’ll revisit this based on user feedback.

The reason we don’t allow ACTION*() inside a function body is that
the current C++ standard doesn’t allow function-local types to be used
to instantiate templates. The upcoming C++0x standard will lift this
restriction. Once this feature is widely supported by compilers, we
can revisit the implementation and add support for using ACTION*()
inside a function.

C++0x will also support lambda expressions. When they become
available, we may want to support using lambdas as actions.

Macros for Defining Matchers

Once the macros for defining actions are implemented, we plan to do
the same for matchers:

MATCHER(name) { statements; }

where you can refer to the value being matched as arg. For example,
given:

MATCHER(IsPositive) { return arg > 0; }

you can use IsPositive() as a matcher that matches a value iff it is
greater than 0.

We will also add MATCHER_P, MATCHER_P2, and etc for parameterized
matchers.

 <no title>

 This page lists all documentation markdown files for Google Mock (the
current git version)
– if you use a former version of Google Mock, please read the
documentation for that specific version instead (e.g. by checking out
the respective git branch/tag).

	ForDummies – start here if you are new to Google Mock.

	CheatSheet – a quick reference.

	CookBook – recipes for doing various tasks using Google Mock.

	FrequentlyAskedQuestions – check here before asking a question on the mailing list.

To contribute code to Google Mock, read:

	CONTRIBUTING – read this before writing your first patch.

	Pump Manual – how we generate some of Google Mock’s source files.

 What Is Google C++ Mocking Framework?

 (Note: If you get compiler errors that you don’t understand, be sure to consult Google Mock Doctor.)

What Is Google C++ Mocking Framework?

When you write a prototype or test, often it’s not feasible or wise to rely on real objects entirely. A mock object implements the same interface as a real object (so it can be used as one), but lets you specify at run time how it will be used and what it should do (which methods will be called? in which order? how many times? with what arguments? what will they return? etc).

Note: It is easy to confuse the term fake objects with mock objects. Fakes and mocks actually mean very different things in the Test-Driven Development (TDD) community:

	Fake objects have working implementations, but usually take some shortcut (perhaps to make the operations less expensive), which makes them not suitable for production. An in-memory file system would be an example of a fake.

	Mocks are objects pre-programmed with expectations, which form a specification of the calls they are expected to receive.

If all this seems too abstract for you, don’t worry - the most important thing to remember is that a mock allows you to check the interaction between itself and code that uses it. The difference between fakes and mocks will become much clearer once you start to use mocks.

Google C++ Mocking Framework (or Google Mock for short) is a library (sometimes we also call it a “framework” to make it sound cool) for creating mock classes and using them. It does to C++ what jMock [http://www.jmock.org/] and EasyMock [http://www.easymock.org/] do to Java.

Using Google Mock involves three basic steps:

	Use some simple macros to describe the interface you want to mock, and they will expand to the implementation of your mock class;

	Create some mock objects and specify its expectations and behavior using an intuitive syntax;

	Exercise code that uses the mock objects. Google Mock will catch any violation of the expectations as soon as it arises.

Why Google Mock?

While mock objects help you remove unnecessary dependencies in tests and make them fast and reliable, using mocks manually in C++ is hard:

	Someone has to implement the mocks. The job is usually tedious and error-prone. No wonder people go great distances to avoid it.

	The quality of those manually written mocks is a bit, uh, unpredictable. You may see some really polished ones, but you may also see some that were hacked up in a hurry and have all sorts of ad-hoc restrictions.

	The knowledge you gained from using one mock doesn’t transfer to the next.

In contrast, Java and Python programmers have some fine mock frameworks, which automate the creation of mocks. As a result, mocking is a proven effective technique and widely adopted practice in those communities. Having the right tool absolutely makes the difference.

Google Mock was built to help C++ programmers. It was inspired by jMock [http://www.jmock.org/] and EasyMock [http://www.easymock.org/], but designed with C++’s specifics in mind. It is your friend if any of the following problems is bothering you:

	You are stuck with a sub-optimal design and wish you had done more prototyping before it was too late, but prototyping in C++ is by no means “rapid”.

	Your tests are slow as they depend on too many libraries or use expensive resources (e.g. a database).

	Your tests are brittle as some resources they use are unreliable (e.g. the network).

	You want to test how your code handles a failure (e.g. a file checksum error), but it’s not easy to cause one.

	You need to make sure that your module interacts with other modules in the right way, but it’s hard to observe the interaction; therefore you resort to observing the side effects at the end of the action, which is awkward at best.

	You want to “mock out” your dependencies, except that they don’t have mock implementations yet; and, frankly, you aren’t thrilled by some of those hand-written mocks.

We encourage you to use Google Mock as:

	a design tool, for it lets you experiment with your interface design early and often. More iterations lead to better designs!

	a testing tool to cut your tests’ outbound dependencies and probe the interaction between your module and its collaborators.

Getting Started

Using Google Mock is easy! Inside your C++ source file, just #include "gtest/gtest.h" and "gmock/gmock.h", and you are ready to go.

A Case for Mock Turtles

Let’s look at an example. Suppose you are developing a graphics program that relies on a LOGO-like API for drawing. How would you test that it does the right thing? Well, you can run it and compare the screen with a golden screen snapshot, but let’s admit it: tests like this are expensive to run and fragile (What if you just upgraded to a shiny new graphics card that has better anti-aliasing? Suddenly you have to update all your golden images.). It would be too painful if all your tests are like this. Fortunately, you learned about Dependency Injection and know the right thing to do: instead of having your application talk to the drawing API directly, wrap the API in an interface (say, Turtle) and code to that interface:

class Turtle {
 ...
 virtual ~Turtle() {}
 virtual void PenUp() = 0;
 virtual void PenDown() = 0;
 virtual void Forward(int distance) = 0;
 virtual void Turn(int degrees) = 0;
 virtual void GoTo(int x, int y) = 0;
 virtual int GetX() const = 0;
 virtual int GetY() const = 0;
};

(Note that the destructor of Turtle must be virtual, as is the case for all classes you intend to inherit from - otherwise the destructor of the derived class will not be called when you delete an object through a base pointer, and you’ll get corrupted program states like memory leaks.)

You can control whether the turtle’s movement will leave a trace using PenUp() and PenDown(), and control its movement using Forward(), Turn(), and GoTo(). Finally, GetX() and GetY() tell you the current position of the turtle.

Your program will normally use a real implementation of this interface. In tests, you can use a mock implementation instead. This allows you to easily check what drawing primitives your program is calling, with what arguments, and in which order. Tests written this way are much more robust (they won’t break because your new machine does anti-aliasing differently), easier to read and maintain (the intent of a test is expressed in the code, not in some binary images), and run much, much faster.

Writing the Mock Class

If you are lucky, the mocks you need to use have already been implemented by some nice people. If, however, you find yourself in the position to write a mock class, relax - Google Mock turns this task into a fun game! (Well, almost.)

How to Define It

Using the Turtle interface as example, here are the simple steps you need to follow:

	Derive a class MockTurtle from Turtle.

	Take a virtual function of Turtle (while it’s possible to mock non-virtual methods using templates, it’s much more involved). Count how many arguments it has.

	In the public: section of the child class, write MOCK_METHODn(); (or MOCK_CONST_METHODn(); if you are mocking a const method), where n is the number of the arguments; if you counted wrong, shame on you, and a compiler error will tell you so.

	Now comes the fun part: you take the function signature, cut-and-paste the function name as the first argument to the macro, and leave what’s left as the second argument (in case you’re curious, this is the type of the function).

	Repeat until all virtual functions you want to mock are done.

After the process, you should have something like:

#include "gmock/gmock.h" // Brings in Google Mock.
class MockTurtle : public Turtle {
 public:
 ...
 MOCK_METHOD0(PenUp, void());
 MOCK_METHOD0(PenDown, void());
 MOCK_METHOD1(Forward, void(int distance));
 MOCK_METHOD1(Turn, void(int degrees));
 MOCK_METHOD2(GoTo, void(int x, int y));
 MOCK_CONST_METHOD0(GetX, int());
 MOCK_CONST_METHOD0(GetY, int());
};

You don’t need to define these mock methods somewhere else - the MOCK_METHOD* macros will generate the definitions for you. It’s that simple! Once you get the hang of it, you can pump out mock classes faster than your source-control system can handle your check-ins.

Tip: If even this is too much work for you, you’ll find the
gmock_gen.py tool in Google Mock’s scripts/generator/ directory (courtesy of the cppclean [http://code.google.com/p/cppclean/] project) useful. This command-line
tool requires that you have Python 2.4 installed. You give it a C++ file and the name of an abstract class defined in it,
and it will print the definition of the mock class for you. Due to the
complexity of the C++ language, this script may not always work, but
it can be quite handy when it does. For more details, read the user documentation.

Where to Put It

When you define a mock class, you need to decide where to put its definition. Some people put it in a *_test.cc. This is fine when the interface being mocked (say, Foo) is owned by the same person or team. Otherwise, when the owner of Foo changes it, your test could break. (You can’t really expect Foo’s maintainer to fix every test that uses Foo, can you?)

So, the rule of thumb is: if you need to mock Foo and it’s owned by others, define the mock class in Foo’s package (better, in a testing sub-package such that you can clearly separate production code and testing utilities), and put it in a mock_foo.h. Then everyone can reference mock_foo.h from their tests. If Foo ever changes, there is only one copy of MockFoo to change, and only tests that depend on the changed methods need to be fixed.

Another way to do it: you can introduce a thin layer FooAdaptor on top of Foo and code to this new interface. Since you own FooAdaptor, you can absorb changes in Foo much more easily. While this is more work initially, carefully choosing the adaptor interface can make your code easier to write and more readable (a net win in the long run), as you can choose FooAdaptor to fit your specific domain much better than Foo does.

Using Mocks in Tests

Once you have a mock class, using it is easy. The typical work flow is:

	Import the Google Mock names from the testing namespace such that you can use them unqualified (You only have to do it once per file. Remember that namespaces are a good idea and good for your health.).

	Create some mock objects.

	Specify your expectations on them (How many times will a method be called? With what arguments? What should it do? etc.).

	Exercise some code that uses the mocks; optionally, check the result using Google Test assertions. If a mock method is called more than expected or with wrong arguments, you’ll get an error immediately.

	When a mock is destructed, Google Mock will automatically check whether all expectations on it have been satisfied.

Here’s an example:

#include "path/to/mock-turtle.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using ::testing::AtLeast; // #1

TEST(PainterTest, CanDrawSomething) {
 MockTurtle turtle; // #2
 EXPECT_CALL(turtle, PenDown()) // #3
 .Times(AtLeast(1));

 Painter painter(&turtle); // #4

 EXPECT_TRUE(painter.DrawCircle(0, 0, 10));
} // #5

int main(int argc, char** argv) {
 // The following line must be executed to initialize Google Mock
 // (and Google Test) before running the tests.
 ::testing::InitGoogleMock(&argc, argv);
 return RUN_ALL_TESTS();
}

As you might have guessed, this test checks that PenDown() is called at least once. If the painter object didn’t call this method, your test will fail with a message like this:

path/to/my_test.cc:119: Failure
Actual function call count doesn't match this expectation:
Actually: never called;
Expected: called at least once.

Tip 1: If you run the test from an Emacs buffer, you can hit <Enter> on the line number displayed in the error message to jump right to the failed expectation.

Tip 2: If your mock objects are never deleted, the final verification won’t happen. Therefore it’s a good idea to use a heap leak checker in your tests when you allocate mocks on the heap.

Important note: Google Mock requires expectations to be set before the mock functions are called, otherwise the behavior is undefined. In particular, you mustn’t interleave EXPECT_CALL()s and calls to the mock functions.

This means EXPECT_CALL() should be read as expecting that a call will occur in the future, not that a call has occurred. Why does Google Mock work like that? Well, specifying the expectation beforehand allows Google Mock to report a violation as soon as it arises, when the context (stack trace, etc) is still available. This makes debugging much easier.

Admittedly, this test is contrived and doesn’t do much. You can easily achieve the same effect without using Google Mock. However, as we shall reveal soon, Google Mock allows you to do much more with the mocks.

Using Google Mock with Any Testing Framework

If you want to use something other than Google Test (e.g. CppUnit [http://sourceforge.net/projects/cppunit/] or
CxxTest [https://cxxtest.com/]) as your testing framework, just change the main() function in the previous section to:

int main(int argc, char** argv) {
 // The following line causes Google Mock to throw an exception on failure,
 // which will be interpreted by your testing framework as a test failure.
 ::testing::GTEST_FLAG(throw_on_failure) = true;
 ::testing::InitGoogleMock(&argc, argv);
 ... whatever your testing framework requires ...
}

This approach has a catch: it makes Google Mock throw an exception
from a mock object’s destructor sometimes. With some compilers, this
sometimes causes the test program to crash. You’ll still be able to
notice that the test has failed, but it’s not a graceful failure.

A better solution is to use Google Test’s
event listener API
to report a test failure to your testing framework properly. You’ll need to
implement the OnTestPartResult() method of the event listener interface, but it
should be straightforward.

If this turns out to be too much work, we suggest that you stick with
Google Test, which works with Google Mock seamlessly (in fact, it is
technically part of Google Mock.). If there is a reason that you
cannot use Google Test, please let us know.

Setting Expectations

The key to using a mock object successfully is to set the right expectations on it. If you set the expectations too strict, your test will fail as the result of unrelated changes. If you set them too loose, bugs can slip through. You want to do it just right such that your test can catch exactly the kind of bugs you intend it to catch. Google Mock provides the necessary means for you to do it “just right.”

General Syntax

In Google Mock we use the EXPECT_CALL() macro to set an expectation on a mock method. The general syntax is:

EXPECT_CALL(mock_object, method(matchers))
 .Times(cardinality)
 .WillOnce(action)
 .WillRepeatedly(action);

The macro has two arguments: first the mock object, and then the method and its arguments. Note that the two are separated by a comma (,), not a period (.). (Why using a comma? The answer is that it was necessary for technical reasons.)

The macro can be followed by some optional clauses that provide more information about the expectation. We’ll discuss how each clause works in the coming sections.

This syntax is designed to make an expectation read like English. For example, you can probably guess that

using ::testing::Return;
...
EXPECT_CALL(turtle, GetX())
 .Times(5)
 .WillOnce(Return(100))
 .WillOnce(Return(150))
 .WillRepeatedly(Return(200));

says that the turtle object’s GetX() method will be called five times, it will return 100 the first time, 150 the second time, and then 200 every time. Some people like to call this style of syntax a Domain-Specific Language (DSL).

Note: Why do we use a macro to do this? It serves two purposes: first it makes expectations easily identifiable (either by grep or by a human reader), and second it allows Google Mock to include the source file location of a failed expectation in messages, making debugging easier.

Matchers: What Arguments Do We Expect?

When a mock function takes arguments, we must specify what arguments we are expecting; for example:

// Expects the turtle to move forward by 100 units.
EXPECT_CALL(turtle, Forward(100));

Sometimes you may not want to be too specific (Remember that talk about tests being too rigid? Over specification leads to brittle tests and obscures the intent of tests. Therefore we encourage you to specify only what’s necessary - no more, no less.). If you care to check that Forward() will be called but aren’t interested in its actual argument, write _ as the argument, which means “anything goes”:

using ::testing::_;
...
// Expects the turtle to move forward.
EXPECT_CALL(turtle, Forward(_));

_ is an instance of what we call matchers. A matcher is like a predicate and can test whether an argument is what we’d expect. You can use a matcher inside EXPECT_CALL() wherever a function argument is expected.

A list of built-in matchers can be found in the CheatSheet. For example, here’s the Ge (greater than or equal) matcher:

using ::testing::Ge;
...
EXPECT_CALL(turtle, Forward(Ge(100)));

This checks that the turtle will be told to go forward by at least 100 units.

Cardinalities: How Many Times Will It Be Called?

The first clause we can specify following an EXPECT_CALL() is Times(). We call its argument a cardinality as it tells how many times the call should occur. It allows us to repeat an expectation many times without actually writing it as many times. More importantly, a cardinality can be “fuzzy”, just like a matcher can be. This allows a user to express the intent of a test exactly.

An interesting special case is when we say Times(0). You may have guessed - it means that the function shouldn’t be called with the given arguments at all, and Google Mock will report a Google Test failure whenever the function is (wrongfully) called.

We’ve seen AtLeast(n) as an example of fuzzy cardinalities earlier. For the list of built-in cardinalities you can use, see the CheatSheet.

The Times() clause can be omitted. If you omit Times(), Google Mock will infer the cardinality for you. The rules are easy to remember:

	If neither WillOnce() nor WillRepeatedly() is in the EXPECT_CALL(), the inferred cardinality is Times(1).

	If there are n WillOnce()’s but no WillRepeatedly(), where n >= 1, the cardinality is Times(n).

	If there are n WillOnce()’s and one WillRepeatedly(), where n >= 0, the cardinality is Times(AtLeast(n)).

Quick quiz: what do you think will happen if a function is expected to be called twice but actually called four times?

Actions: What Should It Do?

Remember that a mock object doesn’t really have a working implementation? We as users have to tell it what to do when a method is invoked. This is easy in Google Mock.

First, if the return type of a mock function is a built-in type or a pointer, the function has a default action (a void function will just return, a bool function will return false, and other functions will return 0). In addition, in C++ 11 and above, a mock function whose return type is default-constructible (i.e. has a default constructor) has a default action of returning a default-constructed value. If you don’t say anything, this behavior will be used.

Second, if a mock function doesn’t have a default action, or the default action doesn’t suit you, you can specify the action to be taken each time the expectation matches using a series of WillOnce() clauses followed by an optional WillRepeatedly(). For example,

using ::testing::Return;
...
EXPECT_CALL(turtle, GetX())
 .WillOnce(Return(100))
 .WillOnce(Return(200))
 .WillOnce(Return(300));

This says that turtle.GetX() will be called exactly three times (Google Mock inferred this from how many WillOnce() clauses we’ve written, since we didn’t explicitly write Times()), and will return 100, 200, and 300 respectively.

using ::testing::Return;
...
EXPECT_CALL(turtle, GetY())
 .WillOnce(Return(100))
 .WillOnce(Return(200))
 .WillRepeatedly(Return(300));

says that turtle.GetY() will be called at least twice (Google Mock knows this as we’ve written two WillOnce() clauses and a WillRepeatedly() while having no explicit Times()), will return 100 the first time, 200 the second time, and 300 from the third time on.

Of course, if you explicitly write a Times(), Google Mock will not try to infer the cardinality itself. What if the number you specified is larger than there are WillOnce() clauses? Well, after all WillOnce()s are used up, Google Mock will do the default action for the function every time (unless, of course, you have a WillRepeatedly().).

What can we do inside WillOnce() besides Return()? You can return a reference using ReturnRef(variable), or invoke a pre-defined function, among others.

Important note: The EXPECT_CALL() statement evaluates the action clause only once, even though the action may be performed many times. Therefore you must be careful about side effects. The following may not do what you want:

int n = 100;
EXPECT_CALL(turtle, GetX())
.Times(4)
.WillRepeatedly(Return(n++));

Instead of returning 100, 101, 102, …, consecutively, this mock function will always return 100 as n++ is only evaluated once. Similarly, Return(new Foo) will create a new Foo object when the EXPECT_CALL() is executed, and will return the same pointer every time. If you want the side effect to happen every time, you need to define a custom action, which we’ll teach in the CookBook.

Time for another quiz! What do you think the following means?

using ::testing::Return;
...
EXPECT_CALL(turtle, GetY())
.Times(4)
.WillOnce(Return(100));

Obviously turtle.GetY() is expected to be called four times. But if you think it will return 100 every time, think twice! Remember that one WillOnce() clause will be consumed each time the function is invoked and the default action will be taken afterwards. So the right answer is that turtle.GetY() will return 100 the first time, but return 0 from the second time on, as returning 0 is the default action for int functions.

Using Multiple Expectations

So far we’ve only shown examples where you have a single expectation. More realistically, you’re going to specify expectations on multiple mock methods, which may be from multiple mock objects.

By default, when a mock method is invoked, Google Mock will search the expectations in the reverse order they are defined, and stop when an active expectation that matches the arguments is found (you can think of it as “newer rules override older ones.”). If the matching expectation cannot take any more calls, you will get an upper-bound-violated failure. Here’s an example:

using ::testing::_;
...
EXPECT_CALL(turtle, Forward(_)); // #1
EXPECT_CALL(turtle, Forward(10)) // #2
 .Times(2);

If Forward(10) is called three times in a row, the third time it will be an error, as the last matching expectation (#2) has been saturated. If, however, the third Forward(10) call is replaced by Forward(20), then it would be OK, as now #1 will be the matching expectation.

Side note: Why does Google Mock search for a match in the reverse order of the expectations? The reason is that this allows a user to set up the default expectations in a mock object’s constructor or the test fixture’s set-up phase and then customize the mock by writing more specific expectations in the test body. So, if you have two expectations on the same method, you want to put the one with more specific matchers after the other, or the more specific rule would be shadowed by the more general one that comes after it.

Ordered vs Unordered Calls

By default, an expectation can match a call even though an earlier expectation hasn’t been satisfied. In other words, the calls don’t have to occur in the order the expectations are specified.

Sometimes, you may want all the expected calls to occur in a strict order. To say this in Google Mock is easy:

using ::testing::InSequence;
...
TEST(FooTest, DrawsLineSegment) {
 ...
 {
 InSequence dummy;

 EXPECT_CALL(turtle, PenDown());
 EXPECT_CALL(turtle, Forward(100));
 EXPECT_CALL(turtle, PenUp());
 }
 Foo();
}

By creating an object of type InSequence, all expectations in its scope are put into a sequence and have to occur sequentially. Since we are just relying on the constructor and destructor of this object to do the actual work, its name is really irrelevant.

In this example, we test that Foo() calls the three expected functions in the order as written. If a call is made out-of-order, it will be an error.

(What if you care about the relative order of some of the calls, but not all of them? Can you specify an arbitrary partial order? The answer is … yes! If you are impatient, the details can be found in the CookBook.)

All Expectations Are Sticky (Unless Said Otherwise)

Now let’s do a quick quiz to see how well you can use this mock stuff already. How would you test that the turtle is asked to go to the origin exactly twice (you want to ignore any other instructions it receives)?

After you’ve come up with your answer, take a look at ours and compare notes (solve it yourself first - don’t cheat!):

using ::testing::_;
...
EXPECT_CALL(turtle, GoTo(_, _)) // #1
 .Times(AnyNumber());
EXPECT_CALL(turtle, GoTo(0, 0)) // #2
 .Times(2);

Suppose turtle.GoTo(0, 0) is called three times. In the third time, Google Mock will see that the arguments match expectation #2 (remember that we always pick the last matching expectation). Now, since we said that there should be only two such calls, Google Mock will report an error immediately. This is basically what we’ve told you in the “Using Multiple Expectations” section above.

This example shows that expectations in Google Mock are “sticky” by default, in the sense that they remain active even after we have reached their invocation upper bounds. This is an important rule to remember, as it affects the meaning of the spec, and is different to how it’s done in many other mocking frameworks (Why’d we do that? Because we think our rule makes the common cases easier to express and understand.).

Simple? Let’s see if you’ve really understood it: what does the following code say?

using ::testing::Return;
...
for (int i = n; i > 0; i--) {
 EXPECT_CALL(turtle, GetX())
 .WillOnce(Return(10*i));
}

If you think it says that turtle.GetX() will be called n times and will return 10, 20, 30, …, consecutively, think twice! The problem is that, as we said, expectations are sticky. So, the second time turtle.GetX() is called, the last (latest) EXPECT_CALL() statement will match, and will immediately lead to an “upper bound exceeded” error - this piece of code is not very useful!

One correct way of saying that turtle.GetX() will return 10, 20, 30, …, is to explicitly say that the expectations are not sticky. In other words, they should retire as soon as they are saturated:

using ::testing::Return;
...
for (int i = n; i > 0; i--) {
 EXPECT_CALL(turtle, GetX())
 .WillOnce(Return(10*i))
 .RetiresOnSaturation();
}

And, there’s a better way to do it: in this case, we expect the calls to occur in a specific order, and we line up the actions to match the order. Since the order is important here, we should make it explicit using a sequence:

using ::testing::InSequence;
using ::testing::Return;
...
{
 InSequence s;

 for (int i = 1; i <= n; i++) {
 EXPECT_CALL(turtle, GetX())
 .WillOnce(Return(10*i))
 .RetiresOnSaturation();
 }
}

By the way, the other situation where an expectation may not be sticky is when it’s in a sequence - as soon as another expectation that comes after it in the sequence has been used, it automatically retires (and will never be used to match any call).

Uninteresting Calls

A mock object may have many methods, and not all of them are that interesting. For example, in some tests we may not care about how many times GetX() and GetY() get called.

In Google Mock, if you are not interested in a method, just don’t say anything about it. If a call to this method occurs, you’ll see a warning in the test output, but it won’t be a failure.

What Now?

Congratulations! You’ve learned enough about Google Mock to start using it. Now, you might want to join the googlemock [http://groups.google.com/group/googlemock] discussion group and actually write some tests using Google Mock - it will be fun. Hey, it may even be addictive - you’ve been warned.

Then, if you feel like increasing your mock quotient, you should move on to the CookBook. You can learn many advanced features of Google Mock there – and advance your level of enjoyment and testing bliss.

 When I call a method on my mock object, the method for the real object is invoked instead. What’s the problem?

 Please send your questions to the
googlemock [http://groups.google.com/group/googlemock] discussion
group. If you need help with compiler errors, make sure you have
tried Google Mock Doctor first.

When I call a method on my mock object, the method for the real object is invoked instead. What’s the problem?

In order for a method to be mocked, it must be virtual, unless you use the high-perf dependency injection technique.

I wrote some matchers. After I upgraded to a new version of Google Mock, they no longer compile. What’s going on?

After version 1.4.0 of Google Mock was released, we had an idea on how
to make it easier to write matchers that can generate informative
messages efficiently. We experimented with this idea and liked what
we saw. Therefore we decided to implement it.

Unfortunately, this means that if you have defined your own matchers
by implementing MatcherInterface or using MakePolymorphicMatcher(),
your definitions will no longer compile. Matchers defined using the
MATCHER* family of macros are not affected.

Sorry for the hassle if your matchers are affected. We believe it’s
in everyone’s long-term interest to make this change sooner than
later. Fortunately, it’s usually not hard to migrate an existing
matcher to the new API. Here’s what you need to do:

If you wrote your matcher like this:

// Old matcher definition that doesn't work with the latest
// Google Mock.
using ::testing::MatcherInterface;
...
class MyWonderfulMatcher : public MatcherInterface<MyType> {
 public:
 ...
 virtual bool Matches(MyType value) const {
 // Returns true if value matches.
 return value.GetFoo() > 5;
 }
 ...
};

you’ll need to change it to:

// New matcher definition that works with the latest Google Mock.
using ::testing::MatcherInterface;
using ::testing::MatchResultListener;
...
class MyWonderfulMatcher : public MatcherInterface<MyType> {
 public:
 ...
 virtual bool MatchAndExplain(MyType value,
 MatchResultListener* listener) const {
 // Returns true if value matches.
 return value.GetFoo() > 5;
 }
 ...
};

(i.e. rename Matches() to MatchAndExplain() and give it a second
argument of type MatchResultListener*.)

If you were also using ExplainMatchResultTo() to improve the matcher
message:

// Old matcher definition that doesn't work with the lastest
// Google Mock.
using ::testing::MatcherInterface;
...
class MyWonderfulMatcher : public MatcherInterface<MyType> {
 public:
 ...
 virtual bool Matches(MyType value) const {
 // Returns true if value matches.
 return value.GetFoo() > 5;
 }

 virtual void ExplainMatchResultTo(MyType value,
 ::std::ostream* os) const {
 // Prints some helpful information to os to help
 // a user understand why value matches (or doesn't match).
 *os << "the Foo property is " << value.GetFoo();
 }
 ...
};

you should move the logic of ExplainMatchResultTo() into
MatchAndExplain(), using the MatchResultListener argument where
the ::std::ostream was used:

// New matcher definition that works with the latest Google Mock.
using ::testing::MatcherInterface;
using ::testing::MatchResultListener;
...
class MyWonderfulMatcher : public MatcherInterface<MyType> {
 public:
 ...
 virtual bool MatchAndExplain(MyType value,
 MatchResultListener* listener) const {
 // Returns true if value matches.
 *listener << "the Foo property is " << value.GetFoo();
 return value.GetFoo() > 5;
 }
 ...
};

If your matcher is defined using MakePolymorphicMatcher():

// Old matcher definition that doesn't work with the latest
// Google Mock.
using ::testing::MakePolymorphicMatcher;
...
class MyGreatMatcher {
 public:
 ...
 bool Matches(MyType value) const {
 // Returns true if value matches.
 return value.GetBar() < 42;
 }
 ...
};
... MakePolymorphicMatcher(MyGreatMatcher()) ...

you should rename the Matches() method to MatchAndExplain() and
add a MatchResultListener* argument (the same as what you need to do
for matchers defined by implementing MatcherInterface):

// New matcher definition that works with the latest Google Mock.
using ::testing::MakePolymorphicMatcher;
using ::testing::MatchResultListener;
...
class MyGreatMatcher {
 public:
 ...
 bool MatchAndExplain(MyType value,
 MatchResultListener* listener) const {
 // Returns true if value matches.
 return value.GetBar() < 42;
 }
 ...
};
... MakePolymorphicMatcher(MyGreatMatcher()) ...

If your polymorphic matcher uses ExplainMatchResultTo() for better
failure messages:

// Old matcher definition that doesn't work with the latest
// Google Mock.
using ::testing::MakePolymorphicMatcher;
...
class MyGreatMatcher {
 public:
 ...
 bool Matches(MyType value) const {
 // Returns true if value matches.
 return value.GetBar() < 42;
 }
 ...
};
void ExplainMatchResultTo(const MyGreatMatcher& matcher,
 MyType value,
 ::std::ostream* os) {
 // Prints some helpful information to os to help
 // a user understand why value matches (or doesn't match).
 *os << "the Bar property is " << value.GetBar();
}
... MakePolymorphicMatcher(MyGreatMatcher()) ...

you’ll need to move the logic inside ExplainMatchResultTo() to
MatchAndExplain():

// New matcher definition that works with the latest Google Mock.
using ::testing::MakePolymorphicMatcher;
using ::testing::MatchResultListener;
...
class MyGreatMatcher {
 public:
 ...
 bool MatchAndExplain(MyType value,
 MatchResultListener* listener) const {
 // Returns true if value matches.
 *listener << "the Bar property is " << value.GetBar();
 return value.GetBar() < 42;
 }
 ...
};
... MakePolymorphicMatcher(MyGreatMatcher()) ...

For more information, you can read these
two
recipes
from the cookbook. As always, you
are welcome to post questions on googlemock@googlegroups.com if you
need any help.

When using Google Mock, do I have to use Google Test as the testing framework? I have my favorite testing framework and don’t want to switch.

Google Mock works out of the box with Google Test. However, it’s easy
to configure it to work with any testing framework of your choice.
Here is how.

How am I supposed to make sense of these horrible template errors?

If you are confused by the compiler errors gcc threw at you,
try consulting the Google Mock Doctor tool first. What it does is to
scan stdin for gcc error messages, and spit out diagnoses on the
problems (we call them diseases) your code has.

To “install”, run command:

alias gmd='<path to googlemock>/scripts/gmock_doctor.py'

To use it, do:

<your-favorite-build-command> <your-test> 2>&1 | gmd

For example:

make my_test 2>&1 | gmd

Or you can run gmd and copy-n-paste gcc’s error messages to it.

Can I mock a variadic function?

You cannot mock a variadic function (i.e. a function taking ellipsis
(...) arguments) directly in Google Mock.

The problem is that in general, there is no way for a mock object to
know how many arguments are passed to the variadic method, and what
the arguments’ types are. Only the author of the base class knows
the protocol, and we cannot look into their head.

Therefore, to mock such a function, the user must teach the mock
object how to figure out the number of arguments and their types. One
way to do it is to provide overloaded versions of the function.

Ellipsis arguments are inherited from C and not really a C++ feature.
They are unsafe to use and don’t work with arguments that have
constructors or destructors. Therefore we recommend to avoid them in
C++ as much as possible.

MSVC gives me warning C4301 or C4373 when I define a mock method with a const parameter. Why?

If you compile this using Microsoft Visual C++ 2005 SP1:

class Foo {
 ...
 virtual void Bar(const int i) = 0;
};

class MockFoo : public Foo {
 ...
 MOCK_METHOD1(Bar, void(const int i));
};

You may get the following warning:

warning C4301: 'MockFoo::Bar': overriding virtual function only differs from 'Foo::Bar' by const/volatile qualifier

This is a MSVC bug. The same code compiles fine with gcc ,for
example. If you use Visual C++ 2008 SP1, you would get the warning:

warning C4373: 'MockFoo::Bar': virtual function overrides 'Foo::Bar', previous versions of the compiler did not override when parameters only differed by const/volatile qualifiers

In C++, if you declare a function with a const parameter, the
const modifier is ignored. Therefore, the Foo base class above
is equivalent to:

class Foo {
 ...
 virtual void Bar(int i) = 0; // int or const int? Makes no difference.
};

In fact, you can declare Bar() with an int parameter, and define
it with a const int parameter. The compiler will still match them
up.

Since making a parameter const is meaningless in the method
declaration, we recommend to remove it in both Foo and MockFoo.
That should workaround the VC bug.

Note that we are talking about the top-level const modifier here.
If the function parameter is passed by pointer or reference, declaring
the pointee or referee as const is still meaningful. For
example, the following two declarations are not equivalent:

void Bar(int* p); // Neither p nor *p is const.
void Bar(const int* p); // p is not const, but *p is.

I have a huge mock class, and Microsoft Visual C++ runs out of memory when compiling it. What can I do?

We’ve noticed that when the /clr compiler flag is used, Visual C++
uses 5~6 times as much memory when compiling a mock class. We suggest
to avoid /clr when compiling native C++ mocks.

I can’t figure out why Google Mock thinks my expectations are not satisfied. What should I do?

You might want to run your test with
--gmock_verbose=info. This flag lets Google Mock print a trace
of every mock function call it receives. By studying the trace,
you’ll gain insights on why the expectations you set are not met.

How can I assert that a function is NEVER called?

EXPECT_CALL(foo, Bar(_))
 .Times(0);

I have a failed test where Google Mock tells me TWICE that a particular expectation is not satisfied. Isn’t this redundant?

When Google Mock detects a failure, it prints relevant information
(the mock function arguments, the state of relevant expectations, and
etc) to help the user debug. If another failure is detected, Google
Mock will do the same, including printing the state of relevant
expectations.

Sometimes an expectation’s state didn’t change between two failures,
and you’ll see the same description of the state twice. They are
however not redundant, as they refer to different points in time.
The fact they are the same is interesting information.

I get a heap check failure when using a mock object, but using a real object is fine. What can be wrong?

Does the class (hopefully a pure interface) you are mocking have a
virtual destructor?

Whenever you derive from a base class, make sure its destructor is
virtual. Otherwise Bad Things will happen. Consider the following
code:

class Base {
 public:
 // Not virtual, but should be.
 ~Base() { ... }
 ...
};

class Derived : public Base {
 public:
 ...
 private:
 std::string value_;
};

...
 Base* p = new Derived;
 ...
 delete p; // Surprise! ~Base() will be called, but ~Derived() will not
 // - value_ is leaked.

By changing ~Base() to virtual, ~Derived() will be correctly
called when delete p is executed, and the heap checker
will be happy.

The “newer expectations override older ones” rule makes writing expectations awkward. Why does Google Mock do that?

When people complain about this, often they are referring to code like:

// foo.Bar() should be called twice, return 1 the first time, and return
// 2 the second time. However, I have to write the expectations in the
// reverse order. This sucks big time!!!
EXPECT_CALL(foo, Bar())
 .WillOnce(Return(2))
 .RetiresOnSaturation();
EXPECT_CALL(foo, Bar())
 .WillOnce(Return(1))
 .RetiresOnSaturation();

The problem is that they didn’t pick the best way to express the test’s
intent.

By default, expectations don’t have to be matched in any particular
order. If you want them to match in a certain order, you need to be
explicit. This is Google Mock’s (and jMock’s) fundamental philosophy: it’s
easy to accidentally over-specify your tests, and we want to make it
harder to do so.

There are two better ways to write the test spec. You could either
put the expectations in sequence:

// foo.Bar() should be called twice, return 1 the first time, and return
// 2 the second time. Using a sequence, we can write the expectations
// in their natural order.
{
 InSequence s;
 EXPECT_CALL(foo, Bar())
 .WillOnce(Return(1))
 .RetiresOnSaturation();
 EXPECT_CALL(foo, Bar())
 .WillOnce(Return(2))
 .RetiresOnSaturation();
}

or you can put the sequence of actions in the same expectation:

// foo.Bar() should be called twice, return 1 the first time, and return
// 2 the second time.
EXPECT_CALL(foo, Bar())
 .WillOnce(Return(1))
 .WillOnce(Return(2))
 .RetiresOnSaturation();

Back to the original questions: why does Google Mock search the
expectations (and ON_CALLs) from back to front? Because this
allows a user to set up a mock’s behavior for the common case early
(e.g. in the mock’s constructor or the test fixture’s set-up phase)
and customize it with more specific rules later. If Google Mock
searches from front to back, this very useful pattern won’t be
possible.

Google Mock prints a warning when a function without EXPECT_CALL is called, even if I have set its behavior using ON_CALL. Would it be reasonable not to show the warning in this case?

When choosing between being neat and being safe, we lean toward the
latter. So the answer is that we think it’s better to show the
warning.

Often people write ON_CALLs in the mock object’s
constructor or SetUp(), as the default behavior rarely changes from
test to test. Then in the test body they set the expectations, which
are often different for each test. Having an ON_CALL in the set-up
part of a test doesn’t mean that the calls are expected. If there’s
no EXPECT_CALL and the method is called, it’s possibly an error. If
we quietly let the call go through without notifying the user, bugs
may creep in unnoticed.

If, however, you are sure that the calls are OK, you can write

EXPECT_CALL(foo, Bar(_))
 .WillRepeatedly(...);

instead of

ON_CALL(foo, Bar(_))
 .WillByDefault(...);

This tells Google Mock that you do expect the calls and no warning should be
printed.

Also, you can control the verbosity using the --gmock_verbose flag.
If you find the output too noisy when debugging, just choose a less
verbose level.

How can I delete the mock function’s argument in an action?

If you find yourself needing to perform some action that’s not
supported by Google Mock directly, remember that you can define your own
actions using
MakeAction() or
MakePolymorphicAction(),
or you can write a stub function and invoke it using
Invoke().

MOCK_METHODn()’s second argument looks funny. Why don’t you use the MOCK_METHODn(Method, return_type, arg_1, …, arg_n) syntax?

What?! I think it’s beautiful. :-)

While which syntax looks more natural is a subjective matter to some
extent, Google Mock’s syntax was chosen for several practical advantages it
has.

Try to mock a function that takes a map as an argument:

virtual int GetSize(const map<int, std::string>& m);

Using the proposed syntax, it would be:

MOCK_METHOD1(GetSize, int, const map<int, std::string>& m);

Guess what? You’ll get a compiler error as the compiler thinks that
const map<int, std::string>& m are two, not one, arguments. To work
around this you can use typedef to give the map type a name, but
that gets in the way of your work. Google Mock’s syntax avoids this
problem as the function’s argument types are protected inside a pair
of parentheses:

// This compiles fine.
MOCK_METHOD1(GetSize, int(const map<int, std::string>& m));

You still need a typedef if the return type contains an unprotected
comma, but that’s much rarer.

Other advantages include:

	MOCK_METHOD1(Foo, int, bool) can leave a reader wonder whether the method returns int or bool, while there won’t be such confusion using Google Mock’s syntax.

	The way Google Mock describes a function type is nothing new, although many people may not be familiar with it. The same syntax was used in C, and the function library in tr1 uses this syntax extensively. Since tr1 will become a part of the new version of STL, we feel very comfortable to be consistent with it.

	The function type syntax is also used in other parts of Google Mock’s API (e.g. the action interface) in order to make the implementation tractable. A user needs to learn it anyway in order to utilize Google Mock’s more advanced features. We’d as well stick to the same syntax in MOCK_METHOD*!

My code calls a static/global function. Can I mock it?

You can, but you need to make some changes.

In general, if you find yourself needing to mock a static function,
it’s a sign that your modules are too tightly coupled (and less
flexible, less reusable, less testable, etc). You are probably better
off defining a small interface and call the function through that
interface, which then can be easily mocked. It’s a bit of work
initially, but usually pays for itself quickly.

This Google Testing Blog
post [https://testing.googleblog.com/2008/06/defeat-static-cling.html]
says it excellently. Check it out.

My mock object needs to do complex stuff. It’s a lot of pain to specify the actions. Google Mock sucks!

I know it’s not a question, but you get an answer for free any way. :-)

With Google Mock, you can create mocks in C++ easily. And people might be
tempted to use them everywhere. Sometimes they work great, and
sometimes you may find them, well, a pain to use. So, what’s wrong in
the latter case?

When you write a test without using mocks, you exercise the code and
assert that it returns the correct value or that the system is in an
expected state. This is sometimes called “state-based testing”.

Mocks are great for what some call “interaction-based” testing:
instead of checking the system state at the very end, mock objects
verify that they are invoked the right way and report an error as soon
as it arises, giving you a handle on the precise context in which the
error was triggered. This is often more effective and economical to
do than state-based testing.

If you are doing state-based testing and using a test double just to
simulate the real object, you are probably better off using a fake.
Using a mock in this case causes pain, as it’s not a strong point for
mocks to perform complex actions. If you experience this and think
that mocks suck, you are just not using the right tool for your
problem. Or, you might be trying to solve the wrong problem. :-)

I got a warning “Uninteresting function call encountered - default action taken..” Should I panic?

By all means, NO! It’s just an FYI.

What it means is that you have a mock function, you haven’t set any
expectations on it (by Google Mock’s rule this means that you are not
interested in calls to this function and therefore it can be called
any number of times), and it is called. That’s OK - you didn’t say
it’s not OK to call the function!

What if you actually meant to disallow this function to be called, but
forgot to write EXPECT_CALL(foo, Bar()).Times(0)? While
one can argue that it’s the user’s fault, Google Mock tries to be nice and
prints you a note.

So, when you see the message and believe that there shouldn’t be any
uninteresting calls, you should investigate what’s going on. To make
your life easier, Google Mock prints the function name and arguments
when an uninteresting call is encountered.

I want to define a custom action. Should I use Invoke() or implement the action interface?

Either way is fine - you want to choose the one that’s more convenient
for your circumstance.

Usually, if your action is for a particular function type, defining it
using Invoke() should be easier; if your action can be used in
functions of different types (e.g. if you are defining
Return(value)), MakePolymorphicAction() is
easiest. Sometimes you want precise control on what types of
functions the action can be used in, and implementing
ActionInterface is the way to go here. See the implementation of
Return() in include/gmock/gmock-actions.h for an example.

I’m using the set-argument-pointee action, and the compiler complains about “conflicting return type specified”. What does it mean?

You got this error as Google Mock has no idea what value it should return
when the mock method is called. SetArgPointee() says what the
side effect is, but doesn’t say what the return value should be. You
need DoAll() to chain a SetArgPointee() with a Return().

See this recipe for more details and an example.

My question is not in your FAQ!

If you cannot find the answer to your question in this FAQ, there are
some other resources you can use:

	search the mailing list archive [http://groups.google.com/group/googlemock/topics],

	ask it on googlemock@googlegroups.com and someone will answer it (to prevent spam, we require you to join the discussion group [http://groups.google.com/group/googlemock] before you can post.).

Please note that creating an issue in the
issue tracker [https://github.com/google/googletest/issues] is not
a good way to get your answer, as it is monitored infrequently by a
very small number of people.

When asking a question, it’s helpful to provide as much of the
following information as possible (people cannot help you if there’s
not enough information in your question):

	the version (or the revision number if you check out from SVN directly) of Google Mock you use (Google Mock is under active development, so it’s possible that your problem has been solved in a later version),

	your operating system,

	the name and version of your compiler,

	the complete command line flags you give to your compiler,

	the complete compiler error messages (if the question is about compilation),

	the actual code (ideally, a minimal but complete program) that has the problem you encounter.

 README contains outdated information on Google Mock’s compatibility with other testing frameworks

 As any non-trivial software system, Google Mock has some known limitations and problems. We are working on improving it, and welcome your help! The follow is a list of issues we know about.

README contains outdated information on Google Mock’s compatibility with other testing frameworks

The README file in release 1.1.0 still says that Google Mock only works with Google Test. Actually, you can configure Google Mock to work with any testing framework you choose.

Tests failing on machines using Power PC CPUs (e.g. some Macs)

gmock_output_test and gmock-printers_test are known to fail with Power PC CPUs. This is due to portability issues with these tests, and is not an indication of problems in Google Mock itself. You can safely ignore them.

Failed to resolve libgtest.so.0 in tests when built against installed Google Test

This only applies if you manually built and installed Google Test, and then built a Google Mock against it (either explicitly, or because gtest-config was in your path post-install). In this situation, Libtool has a known issue with certain systems’ ldconfig setup:

http://article.gmane.org/gmane.comp.sysutils.automake.general/9025

This requires a manual run of “sudo ldconfig” after the “sudo make install” for Google Test before any binaries which link against it can be executed. This isn’t a bug in our install, but we should at least have documented it or hacked a work-around into our install. We should have one of these solutions in our next release.

 Customization Points

Customization Points

The custom directory is an injection point for custom user configurations.

Header gmock-port.h

The following macros can be defined:

Flag related macros:

	GMOCK_DECLARE_bool_(name)

	GMOCK_DECLARE_int32_(name)

	GMOCK_DECLARE_string_(name)

	GMOCK_DEFINE_bool_(name, default_val, doc)

	GMOCK_DEFINE_int32_(name, default_val, doc)

	GMOCK_DEFINE_string_(name, default_val, doc)

 Generic Build Instructions

Generic Build Instructions

Setup

To build Google Test and your tests that use it, you need to tell your build
system where to find its headers and source files. The exact way to do it
depends on which build system you use, and is usually straightforward.

Build

Suppose you put Google Test in directory ${GTEST_DIR}. To build it, create a
library build target (or a project as called by Visual Studio and Xcode) to
compile

${GTEST_DIR}/src/gtest-all.cc

with ${GTEST_DIR}/include in the system header search path and ${GTEST_DIR}
in the normal header search path. Assuming a Linux-like system and gcc,
something like the following will do:

g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
 -pthread -c ${GTEST_DIR}/src/gtest-all.cc
ar -rv libgtest.a gtest-all.o

(We need -pthread as Google Test uses threads.)

Next, you should compile your test source file with ${GTEST_DIR}/include in
the system header search path, and link it with gtest and any other necessary
libraries:

g++ -isystem ${GTEST_DIR}/include -pthread path/to/your_test.cc libgtest.a \
 -o your_test

As an example, the make/ directory contains a Makefile that you can use to build
Google Test on systems where GNU make is available (e.g. Linux, Mac OS X, and
Cygwin). It doesn’t try to build Google Test’s own tests. Instead, it just
builds the Google Test library and a sample test. You can use it as a starting
point for your own build script.

If the default settings are correct for your environment, the following commands
should succeed:

cd ${GTEST_DIR}/make
make
./sample1_unittest

If you see errors, try to tweak the contents of make/Makefile to make them go
away. There are instructions in make/Makefile on how to do it.

Using CMake

Google Test comes with a CMake build script (
CMakeLists.txt [https://github.com/google/googletest/blob/master/CMakeLists.txt])
that can be used on a wide range of platforms (“C” stands for cross-platform.).
If you don’t have CMake installed already, you can download it for free from
http://www.cmake.org/.

CMake works by generating native makefiles or build projects that can be used in
the compiler environment of your choice. You can either build Google Test as a
standalone project or it can be incorporated into an existing CMake build for
another project.

Standalone CMake Project

When building Google Test as a standalone project, the typical workflow starts
with:

mkdir mybuild # Create a directory to hold the build output.
cd mybuild
cmake ${GTEST_DIR} # Generate native build scripts.

If you want to build Google Test’s samples, you should replace the last command
with

cmake -Dgtest_build_samples=ON ${GTEST_DIR}

If you are on a *nix system, you should now see a Makefile in the current
directory. Just type ‘make’ to build gtest.

If you use Windows and have Visual Studio installed, a gtest.sln file and
several .vcproj files will be created. You can then build them using Visual
Studio.

On Mac OS X with Xcode installed, a .xcodeproj file will be generated.

Incorporating Into An Existing CMake Project

If you want to use gtest in a project which already uses CMake, then a more
robust and flexible approach is to build gtest as part of that project directly.
This is done by making the GoogleTest source code available to the main build
and adding it using CMake’s add_subdirectory() command. This has the
significant advantage that the same compiler and linker settings are used
between gtest and the rest of your project, so issues associated with using
incompatible libraries (eg debug/release), etc. are avoided. This is
particularly useful on Windows. Making GoogleTest’s source code available to the
main build can be done a few different ways:

	Download the GoogleTest source code manually and place it at a known
location. This is the least flexible approach and can make it more difficult
to use with continuous integration systems, etc.

	Embed the GoogleTest source code as a direct copy in the main project’s
source tree. This is often the simplest approach, but is also the hardest to
keep up to date. Some organizations may not permit this method.

	Add GoogleTest as a git submodule or equivalent. This may not always be
possible or appropriate. Git submodules, for example, have their own set of
advantages and drawbacks.

	Use CMake to download GoogleTest as part of the build’s configure step. This
is just a little more complex, but doesn’t have the limitations of the other
methods.

The last of the above methods is implemented with a small piece of CMake code in
a separate file (e.g. CMakeLists.txt.in) which is copied to the build area and
then invoked as a sub-build during the CMake stage. That directory is then
pulled into the main build with add_subdirectory(). For example:

New file CMakeLists.txt.in:

cmake_minimum_required(VERSION 2.8.2)

project(googletest-download NONE)

include(ExternalProject)
ExternalProject_Add(googletest
 GIT_REPOSITORY https://github.com/google/googletest.git
 GIT_TAG master
 SOURCE_DIR "${CMAKE_BINARY_DIR}/googletest-src"
 BINARY_DIR "${CMAKE_BINARY_DIR}/googletest-build"
 CONFIGURE_COMMAND ""
 BUILD_COMMAND ""
 INSTALL_COMMAND ""
 TEST_COMMAND ""
)

Existing build’s CMakeLists.txt:

Download and unpack googletest at configure time
configure_file(CMakeLists.txt.in googletest-download/CMakeLists.txt)
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" .
 RESULT_VARIABLE result
 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/googletest-download)
if(result)
 message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} --build .
 RESULT_VARIABLE result
 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/googletest-download)
if(result)
 message(FATAL_ERROR "Build step for googletest failed: ${result}")
endif()

Prevent overriding the parent project's compiler/linker
settings on Windows
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)

Add googletest directly to our build. This defines
the gtest and gtest_main targets.
add_subdirectory(${CMAKE_BINARY_DIR}/googletest-src
 ${CMAKE_BINARY_DIR}/googletest-build
 EXCLUDE_FROM_ALL)

The gtest/gtest_main targets carry header search path
dependencies automatically when using CMake 2.8.11 or
later. Otherwise we have to add them here ourselves.
if (CMAKE_VERSION VERSION_LESS 2.8.11)
 include_directories("${gtest_SOURCE_DIR}/include")
endif()

Now simply link against gtest or gtest_main as needed. Eg
add_executable(example example.cpp)
target_link_libraries(example gtest_main)
add_test(NAME example_test COMMAND example)

Note that this approach requires CMake 2.8.2 or later due to its use of the
ExternalProject_Add() command. The above technique is discussed in more detail
in this separate article [http://crascit.com/2015/07/25/cmake-gtest/] which
also contains a link to a fully generalized implementation of the technique.

Visual Studio Dynamic vs Static Runtimes

By default, new Visual Studio projects link the C runtimes dynamically but
Google Test links them statically. This will generate an error that looks
something like the following: gtest.lib(gtest-all.obj) : error LNK2038: mismatch
detected for ‘RuntimeLibrary’: value ‘MTd_StaticDebug’ doesn’t match value
‘MDd_DynamicDebug’ in main.obj

Google Test already has a CMake option for this: gtest_force_shared_crt

Enabling this option will make gtest link the runtimes dynamically too, and
match the project in which it is included.

Legacy Build Scripts

Before settling on CMake, we have been providing hand-maintained build
projects/scripts for Visual Studio, Xcode, and Autotools. While we continue to
provide them for convenience, they are not actively maintained any more. We
highly recommend that you follow the instructions in the above sections to
integrate Google Test with your existing build system.

If you still need to use the legacy build scripts, here’s how:

The msvc\ folder contains two solutions with Visual C++ projects. Open the
gtest.sln or gtest-md.sln file using Visual Studio, and you are ready to
build Google Test the same way you build any Visual Studio project. Files that
have names ending with -md use DLL versions of Microsoft runtime libraries (the
/MD or the /MDd compiler option). Files without that suffix use static versions
of the runtime libraries (the /MT or the /MTd option). Please note that one must
use the same option to compile both gtest and the test code. If you use Visual
Studio 2005 or above, we recommend the -md version as /MD is the default for new
projects in these versions of Visual Studio.

On Mac OS X, open the gtest.xcodeproj in the xcode/ folder using Xcode.
Build the “gtest” target. The universal binary framework will end up in your
selected build directory (selected in the Xcode “Preferences…” -> “Building”
pane and defaults to xcode/build). Alternatively, at the command line, enter:

xcodebuild

This will build the “Release” configuration of gtest.framework in your default
build location. See the “xcodebuild” man page for more information about
building different configurations and building in different locations.

If you wish to use the Google Test Xcode project with Xcode 4.x and above, you
need to either:

	update the SDK configuration options in xcode/Config/General.xconfig.
Comment options SDKROOT, MACOS_DEPLOYMENT_TARGET, and GCC_VERSION. If
you choose this route you lose the ability to target earlier versions of
MacOS X.

	Install an SDK for an earlier version. This doesn’t appear to be supported
by Apple, but has been reported to work
(http://stackoverflow.com/questions/5378518).

Tweaking Google Test

Google Test can be used in diverse environments. The default configuration may
not work (or may not work well) out of the box in some environments. However,
you can easily tweak Google Test by defining control macros on the compiler
command line. Generally, these macros are named like GTEST_XYZ and you define
them to either 1 or 0 to enable or disable a certain feature.

We list the most frequently used macros below. For a complete list, see file
include/gtest/internal/gtest-port.h [https://github.com/google/googletest/blob/master/include/gtest/internal/gtest-port.h].

Choosing a TR1 Tuple Library

Some Google Test features require the C++ Technical Report 1 (TR1) tuple
library, which is not yet available with all compilers. The good news is that
Google Test implements a subset of TR1 tuple that’s enough for its own need, and
will automatically use this when the compiler doesn’t provide TR1 tuple.

Usually you don’t need to care about which tuple library Google Test uses.
However, if your project already uses TR1 tuple, you need to tell Google Test to
use the same TR1 tuple library the rest of your project uses, or the two tuple
implementations will clash. To do that, add

-DGTEST_USE_OWN_TR1_TUPLE=0

to the compiler flags while compiling Google Test and your tests. If you want to
force Google Test to use its own tuple library, just add

-DGTEST_USE_OWN_TR1_TUPLE=1

to the compiler flags instead.

If you don’t want Google Test to use tuple at all, add

-DGTEST_HAS_TR1_TUPLE=0

and all features using tuple will be disabled.

Multi-threaded Tests

Google Test is thread-safe where the pthread library is available. After
#include "gtest/gtest.h", you can check the GTEST_IS_THREADSAFE macro to see
whether this is the case (yes if the macro is #defined to 1, no if it’s
undefined.).

If Google Test doesn’t correctly detect whether pthread is available in your
environment, you can force it with

-DGTEST_HAS_PTHREAD=1

or

-DGTEST_HAS_PTHREAD=0

When Google Test uses pthread, you may need to add flags to your compiler and/or
linker to select the pthread library, or you’ll get link errors. If you use the
CMake script or the deprecated Autotools script, this is taken care of for you.
If you use your own build script, you’ll need to read your compiler and linker’s
manual to figure out what flags to add.

As a Shared Library (DLL)

Google Test is compact, so most users can build and link it as a static library
for the simplicity. You can choose to use Google Test as a shared library (known
as a DLL on Windows) if you prefer.

To compile gtest as a shared library, add

-DGTEST_CREATE_SHARED_LIBRARY=1

to the compiler flags. You’ll also need to tell the linker to produce a shared
library instead - consult your linker’s manual for how to do it.

To compile your tests that use the gtest shared library, add

-DGTEST_LINKED_AS_SHARED_LIBRARY=1

to the compiler flags.

Note: while the above steps aren’t technically necessary today when using some
compilers (e.g. GCC), they may become necessary in the future, if we decide to
improve the speed of loading the library (see
http://gcc.gnu.org/wiki/Visibility for details). Therefore you are recommended
to always add the above flags when using Google Test as a shared library.
Otherwise a future release of Google Test may break your build script.

Avoiding Macro Name Clashes

In C++, macros don’t obey namespaces. Therefore two libraries that both define a
macro of the same name will clash if you #include both definitions. In case a
Google Test macro clashes with another library, you can force Google Test to
rename its macro to avoid the conflict.

Specifically, if both Google Test and some other code define macro FOO, you can
add

-DGTEST_DONT_DEFINE_FOO=1

to the compiler flags to tell Google Test to change the macro’s name from FOO
to GTEST_FOO. Currently FOO can be FAIL, SUCCEED, or TEST. For
example, with -DGTEST_DONT_DEFINE_TEST=1, you’ll need to write

GTEST_TEST(SomeTest, DoesThis) { ... }

instead of

TEST(SomeTest, DoesThis) { ... }

in order to define a test.

 Using GoogleTest from various build systems

Using GoogleTest from various build systems

GoogleTest comes with pkg-config files that can be used to determine all
necessary flags for compiling and linking to GoogleTest (and GoogleMock).
Pkg-config is a standardised plain-text format containing

	the includedir (-I) path

	necessary macro (-D) definitions

	further required flags (-pthread)

	the library (-L) path

	the library (-l) to link to

All current build systems support pkg-config in one way or another. For
all examples here we assume you want to compile the sample
samples/sample3_unittest.cc.

CMake

Using pkg-config in CMake is fairly easy:

cmake_minimum_required(VERSION 3.0)

cmake_policy(SET CMP0048 NEW)
project(my_gtest_pkgconfig VERSION 0.0.1 LANGUAGES CXX)

find_package(PkgConfig)
pkg_search_module(GTEST REQUIRED gtest_main)

add_executable(testapp samples/sample3_unittest.cc)
target_link_libraries(testapp ${GTEST_LDFLAGS})
target_compile_options(testapp PUBLIC ${GTEST_CFLAGS})

include(CTest)
add_test(first_and_only_test testapp)

It is generally recommended that you use target_compile_options + _CFLAGS
over target_include_directories + _INCLUDE_DIRS as the former includes not
just -I flags (GoogleTest might require a macro indicating to internal headers
that all libraries have been compiled with threading enabled. In addition,
GoogleTest might also require -pthread in the compiling step, and as such
splitting the pkg-config Cflags variable into include dirs and macros for
target_compile_definitions() might still miss this). The same recommendation
goes for using _LDFLAGS over the more commonplace _LIBRARIES, which
happens to discard -L flags and -pthread.

Autotools

Finding GoogleTest in Autoconf and using it from Automake is also fairly easy:

In your configure.ac:

AC_PREREQ([2.69])
AC_INIT([my_gtest_pkgconfig], [0.0.1])
AC_CONFIG_SRCDIR([samples/sample3_unittest.cc])
AC_PROG_CXX

PKG_CHECK_MODULES([GTEST], [gtest_main])

AM_INIT_AUTOMAKE([foreign subdir-objects])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

and in your Makefile.am:

check_PROGRAMS = testapp
TESTS = $(check_PROGRAMS)

testapp_SOURCES = samples/sample3_unittest.cc
testapp_CXXFLAGS = $(GTEST_CFLAGS)
testapp_LDADD = $(GTEST_LIBS)

Meson

Meson natively uses pkgconfig to query dependencies:

project('my_gtest_pkgconfig', 'cpp', version : '0.0.1')

gtest_dep = dependency('gtest_main')

testapp = executable(
 'testapp',
 files(['samples/sample3_unittest.cc']),
 dependencies : gtest_dep,
 install : false)

test('first_and_only_test', testapp)

Plain Makefiles

Since pkg-config is a small Unix command-line utility, it can be used
in handwritten Makefiles too:

GTEST_CFLAGS = `pkg-config --cflags gtest_main`
GTEST_LIBS = `pkg-config --libs gtest_main`

.PHONY: tests all

tests: all
 ./testapp

all: testapp

testapp: testapp.o
 $(CXX) $(CXXFLAGS) $(LDFLAGS) $< -o $@ $(GTEST_LIBS)

testapp.o: samples/sample3_unittest.cc
 $(CXX) $(CPPFLAGS) $(CXXFLAGS) $< -c -o $@ $(GTEST_CFLAGS)

Help! pkg-config can’t find GoogleTest!

Let’s say you have a CMakeLists.txt along the lines of the one in this
tutorial and you try to run cmake. It is very possible that you get a
failure along the lines of:

-- Checking for one of the modules 'gtest_main'
CMake Error at /usr/share/cmake/Modules/FindPkgConfig.cmake:640 (message):
 None of the required 'gtest_main' found

These failures are common if you installed GoogleTest yourself and have not
sourced it from a distro or other package manager. If so, you need to tell
pkg-config where it can find the .pc files containing the information.
Say you installed GoogleTest to /usr/local, then it might be that the
.pc files are installed under /usr/local/lib64/pkgconfig. If you set

export PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig

pkg-config will also try to look in PKG_CONFIG_PATH to find gtest_main.pc.

 The Problem

 Pump is Useful for Meta Programming.

The Problem

Template and macro libraries often need to define many classes,
functions, or macros that vary only (or almost only) in the number of
arguments they take. It’s a lot of repetitive, mechanical, and
error-prone work.

Variadic templates and variadic macros can alleviate the problem.
However, while both are being considered by the C++ committee, neither
is in the standard yet or widely supported by compilers. Thus they
are often not a good choice, especially when your code needs to be
portable. And their capabilities are still limited.

As a result, authors of such libraries often have to write scripts to
generate their implementation. However, our experience is that it’s
tedious to write such scripts, which tend to reflect the structure of
the generated code poorly and are often hard to read and edit. For
example, a small change needed in the generated code may require some
non-intuitive, non-trivial changes in the script. This is especially
painful when experimenting with the code.

Our Solution

Pump (for Pump is Useful for Meta Programming, Pretty Useful for Meta
Programming, or Practical Utility for Meta Programming, whichever you
prefer) is a simple meta-programming tool for C++. The idea is that a
programmer writes a foo.pump file which contains C++ code plus meta
code that manipulates the C++ code. The meta code can handle
iterations over a range, nested iterations, local meta variable
definitions, simple arithmetic, and conditional expressions. You can
view it as a small Domain-Specific Language. The meta language is
designed to be non-intrusive (s.t. it won’t confuse Emacs’ C++ mode,
for example) and concise, making Pump code intuitive and easy to
maintain.

Highlights

	The implementation is in a single Python script and thus ultra portable: no build or installation is needed and it works cross platforms.

	Pump tries to be smart with respect to Google’s style guide [https://github.com/google/styleguide]: it breaks long lines (easy to have when they are generated) at acceptable places to fit within 80 columns and indent the continuation lines correctly.

	The format is human-readable and more concise than XML.

	The format works relatively well with Emacs’ C++ mode.

Examples

The following Pump code (where meta keywords start with $, [[and]] are meta brackets, and $$ starts a meta comment that ends with the line):

$var n = 3 $$ Defines a meta variable n.
$range i 0..n $$ Declares the range of meta iterator i (inclusive).
$for i [[
 $$ Meta loop.
// Foo$i does blah for $i-ary predicates.
$range j 1..i
template <size_t N $for j [[, typename A$j]]>
class Foo$i {
$if i == 0 [[
 blah a;
]] $elif i <= 2 [[
 blah b;
]] $else [[
 blah c;
]]
};

]]

will be translated by the Pump compiler to:

// Foo0 does blah for 0-ary predicates.
template <size_t N>
class Foo0 {
 blah a;
};

// Foo1 does blah for 1-ary predicates.
template <size_t N, typename A1>
class Foo1 {
 blah b;
};

// Foo2 does blah for 2-ary predicates.
template <size_t N, typename A1, typename A2>
class Foo2 {
 blah b;
};

// Foo3 does blah for 3-ary predicates.
template <size_t N, typename A1, typename A2, typename A3>
class Foo3 {
 blah c;
};

In another example,

$range i 1..n
Func($for i + [[a$i]]);
$$ The text between i and [[is the separator between iterations.

will generate one of the following lines (without the comments), depending on the value of n:

Func(); // If n is 0.
Func(a1); // If n is 1.
Func(a1 + a2); // If n is 2.
Func(a1 + a2 + a3); // If n is 3.
// And so on...

Constructs

We support the following meta programming constructs:

$var id = exp	Defines a named constant value. $id is valid util the end of the current meta lexical block.
:—————-	:———————————————————————————————–
$range id exp..exp	Sets the range of an iteration variable, which can be reused in multiple loops later.
$for id sep [[code]]	Iteration. The range of id must have been defined earlier. $id is valid in code.
$($)	Generates a single $ character.
$id	Value of the named constant or iteration variable.
$(exp)	Value of the expression.
$if exp [[code]] else_branch	Conditional.
[[code]]	Meta lexical block.
cpp_code	Raw C++ code.
$$ comment	Meta comment.

Note: To give the user some freedom in formatting the Pump source
code, Pump ignores a new-line character if it’s right after $for foo
or next to [[or]]. Without this rule you’ll often be forced to write
very long lines to get the desired output. Therefore sometimes you may
need to insert an extra new-line in such places for a new-line to show
up in your output.

Grammar

code ::= atomic_code*
atomic_code ::= $var id = exp
 | $var id = [[code]]
 | $range id exp..exp
 | $for id sep [[code]]
 | $($)
 | $id
 | $(exp)
 | $if exp [[code]] else_branch
 | [[code]]
 | cpp_code
sep ::= cpp_code | empty_string
else_branch ::= $else [[code]]
 | $elif exp [[code]] else_branch
 | empty_string
exp ::= simple_expression_in_Python_syntax

Code

You can find the source code of Pump in scripts/pump.py. It is still
very unpolished and lacks automated tests, although it has been
successfully used many times. If you find a chance to use it in your
project, please let us know what you think! We also welcome help on
improving Pump.

Real Examples

You can find real-world applications of Pump in Google Test [https://github.com/google/googletest/tree/master/googletest] and Google Mock [https://github.com/google/googletest/tree/master/googlemock]. The source file foo.h.pump generates foo.h.

Tips

	If a meta variable is followed by a letter or digit, you can separate them using [[]], which inserts an empty string. For example Foo$j[[]]Helper generate Foo1Helper when j is 1.

	To avoid extra-long Pump source lines, you can break a line anywhere you want by inserting [[]] followed by a new line. Since any new-line character next to [[or]] is ignored, the generated code won’t contain this new line.

 Quick Start

 This guide will explain how to use the Google Testing Framework in your Xcode projects on Mac OS X. This tutorial begins by quickly explaining what to do for experienced users. After the quick start, the guide goes provides additional explanation about each step.

Quick Start

Here is the quick guide for using Google Test in your Xcode project.

	Download the source from the website [https://github.com/google/googletest] using this command: svn checkout http://googletest.googlecode.com/svn/trunk/ googletest-read-only.

	Open up the gtest.xcodeproj in the googletest-read-only/xcode/ directory and build the gtest.framework.

	Create a new “Shell Tool” target in your Xcode project called something like “UnitTests”.

	Add the gtest.framework to your project and add it to the “Link Binary with Libraries” build phase of “UnitTests”.

	Add your unit test source code to the “Compile Sources” build phase of “UnitTests”.

	Edit the “UnitTests” executable and add an environment variable named “DYLD_FRAMEWORK_PATH” with a value equal to the path to the framework containing the gtest.framework relative to the compiled executable.

	Build and Go.

The following sections further explain each of the steps listed above in depth, describing in more detail how to complete it including some variations.

Get the Source

Currently, the gtest.framework discussed here isn’t available in a tagged release of Google Test, it is only available in the trunk. As explained at the Google Test site [https://github.com/google/googletest], you can get the code from anonymous SVN with this command:

svn checkout http://googletest.googlecode.com/svn/trunk/ googletest-read-only

Alternatively, if you are working with Subversion in your own code base, you can add Google Test as an external dependency to your own Subversion repository. By following this approach, everyone that checks out your svn repository will also receive a copy of Google Test (a specific version, if you wish) without having to check it out explicitly. This makes the set up of your project simpler and reduces the copied code in the repository.

To use svn:externals, decide where you would like to have the external source reside. You might choose to put the external source inside the trunk, because you want it to be part of the branch when you make a release. However, keeping it outside the trunk in a version-tagged directory called something like third-party/googletest/1.0.1, is another option. Once the location is established, use svn propedit svn:externals _directory_ to set the svn:externals property on a directory in your repository. This directory won’t contain the code, but be its versioned parent directory.

The command svn propedit will bring up your Subversion editor, making editing the long, (potentially multi-line) property simpler. This same method can be used to check out a tagged branch, by using the appropriate URL (e.g. https://github.com/google/googletest/releases/tag/release-1.0.1). Additionally, the svn:externals property allows the specification of a particular revision of the trunk with the -r_##_ option (e.g. externals/src/googletest -r60 http://googletest.googlecode.com/svn/trunk).

Here is an example of using the svn:externals properties on a trunk (read via svn propget) of a project. This value checks out a copy of Google Test into the trunk/externals/src/googletest/ directory.

[Computer:svn] user$ svn propget svn:externals trunk
externals/src/googletest http://googletest.googlecode.com/svn/trunk

Add the Framework to Your Project

The next step is to build and add the gtest.framework to your own project. This guide describes two common ways below.

	Option 1 — The simplest way to add Google Test to your own project, is to open gtest.xcodeproj (found in the xcode/ directory of the Google Test trunk) and build the framework manually. Then, add the built framework into your project using the “Add->Existing Framework…” from the context menu or “Project->Add…” from the main menu. The gtest.framework is relocatable and contains the headers and object code that you’ll need to make tests. This method requires rebuilding every time you upgrade Google Test in your project.

	Option 2 — If you are going to be living off the trunk of Google Test, incorporating its latest features into your unit tests (or are a Google Test developer yourself). You’ll want to rebuild the framework every time the source updates. to do this, you’ll need to add the gtest.xcodeproj file, not the framework itself, to your own Xcode project. Then, from the build products that are revealed by the project’s disclosure triangle, you can find the gtest.framework, which can be added to your targets (discussed below).

Make a Test Target

To start writing tests, make a new “Shell Tool” target. This target template is available under BSD, Cocoa, or Carbon. Add your unit test source code to the “Compile Sources” build phase of the target.

Next, you’ll want to add gtest.framework in two different ways, depending upon which option you chose above.

	Option 1 — During compilation, Xcode will need to know that you are linking against the gtest.framework. Add the gtest.framework to the “Link Binary with Libraries” build phase of your test target. This will include the Google Test headers in your header search path, and will tell the linker where to find the library.

	Option 2 — If your working out of the trunk, you’ll also want to add gtest.framework to your “Link Binary with Libraries” build phase of your test target. In addition, you’ll want to add the gtest.framework as a dependency to your unit test target. This way, Xcode will make sure that gtest.framework is up to date, every time your build your target. Finally, if you don’t share build directories with Google Test, you’ll have to copy the gtest.framework into your own build products directory using a “Run Script” build phase.

Set Up the Executable Run Environment

Since the unit test executable is a shell tool, it doesn’t have a bundle with a Contents/Frameworks directory, in which to place gtest.framework. Instead, the dynamic linker must be told at runtime to search for the framework in another location. This can be accomplished by setting the “DYLD_FRAMEWORK_PATH” environment variable in the “Edit Active Executable …” Arguments tab, under “Variables to be set in the environment:”. The path for this value is the path (relative or absolute) of the directory containing the gtest.framework.

If you haven’t set up the DYLD_FRAMEWORK_PATH, correctly, you might get a message like this:

[Session started at 2008-08-15 06:23:57 -0600.]
 dyld: Library not loaded: @loader_path/../Frameworks/gtest.framework/Versions/A/gtest
 Referenced from: /Users/username/Documents/Sandbox/gtestSample/build/Debug/WidgetFrameworkTest
 Reason: image not found

To correct this problem, go to to the directory containing the executable named in “Referenced from:” value in the error message above. Then, with the terminal in this location, find the relative path to the directory containing the gtest.framework. That is the value you’ll need to set as the DYLD_FRAMEWORK_PATH.

Build and Go

Now, when you click “Build and Go”, the test will be executed. Dumping out something like this:

[Session started at 2008-08-06 06:36:13 -0600.]
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from WidgetInitializerTest
[RUN] WidgetInitializerTest.TestConstructor
[OK] WidgetInitializerTest.TestConstructor
[RUN] WidgetInitializerTest.TestConversion
[OK] WidgetInitializerTest.TestConversion
[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran.
[PASSED] 2 tests.

The Debugger has exited with status 0.

Summary

Unit testing is a valuable way to ensure your data model stays valid even during rapid development or refactoring. The Google Testing Framework is a great unit testing framework for C and C++ which integrates well with an Xcode development environment.

 Advanced googletest Topics

Advanced googletest Topics

Introduction

Now that you have read the googletest Primer and learned how to write
tests using googletest, it’s time to learn some new tricks. This document will
show you more assertions as well as how to construct complex failure messages,
propagate fatal failures, reuse and speed up your test fixtures, and use various
flags with your tests.

More Assertions

This section covers some less frequently used, but still significant,
assertions.

Explicit Success and Failure

These three assertions do not actually test a value or expression. Instead, they
generate a success or failure directly. Like the macros that actually perform a
test, you may stream a custom failure message into them.

SUCCEED();

Generates a success. This does NOT make the overall test succeed. A test is
considered successful only if none of its assertions fail during its execution.

NOTE: SUCCEED() is purely documentary and currently doesn’t generate any
user-visible output. However, we may add SUCCEED() messages to googletest’s
output in the future.

FAIL();
ADD_FAILURE();
ADD_FAILURE_AT("file_path", line_number);

FAIL() generates a fatal failure, while ADD_FAILURE() and ADD_FAILURE_AT()
generate a nonfatal failure. These are useful when control flow, rather than a
Boolean expression, determines the test’s success or failure. For example, you
might want to write something like:

switch(expression) {
 case 1:
 ... some checks ...
 case 2:
 ... some other checks ...
 default:
 FAIL() << "We shouldn't get here.";
}

NOTE: you can only use FAIL() in functions that return void. See the
Assertion Placement section for more information.

Availability: Linux, Windows, Mac.

Exception Assertions

These are for verifying that a piece of code throws (or does not throw) an
exception of the given type:

Fatal assertion | Nonfatal assertion | Verifies
—————————————— | —————————————— | ——–
ASSERT_THROW(statement, exception_type); | EXPECT_THROW(statement, exception_type); | statement throws an exception of the given type
ASSERT_ANY_THROW(statement); | EXPECT_ANY_THROW(statement); | statement throws an exception of any type
ASSERT_NO_THROW(statement); | EXPECT_NO_THROW(statement); | statement doesn’t throw any exception

Examples:

ASSERT_THROW(Foo(5), bar_exception);

EXPECT_NO_THROW({
 int n = 5;
 Bar(&n);
});

Availability: Linux, Windows, Mac; requires exceptions to be enabled in the
build environment (note that google3 disables exceptions).

Predicate Assertions for Better Error Messages

Even though googletest has a rich set of assertions, they can never be complete,
as it’s impossible (nor a good idea) to anticipate all scenarios a user might
run into. Therefore, sometimes a user has to use EXPECT_TRUE() to check a
complex expression, for lack of a better macro. This has the problem of not
showing you the values of the parts of the expression, making it hard to
understand what went wrong. As a workaround, some users choose to construct the
failure message by themselves, streaming it into EXPECT_TRUE(). However, this
is awkward especially when the expression has side-effects or is expensive to
evaluate.

googletest gives you three different options to solve this problem:

Using an Existing Boolean Function

If you already have a function or functor that returns bool (or a type that
can be implicitly converted to bool), you can use it in a predicate
assertion to get the function arguments printed for free:

Fatal assertion	Nonfatal assertion	Verifies
———————————-	———————————-	—————————
ASSERT_PRED1(pred1, val1);	EXPECT_PRED1(pred1, val1);	pred1(val1) is true
ASSERT_PRED2(pred2, val1, val2);	EXPECT_PRED2(pred2, val1, val2);	pred2(val1, val2) is true
...	...	…

In the above, predn is an n-ary predicate function or functor, where val1,
val2, …, and valn are its arguments. The assertion succeeds if the
predicate returns true when applied to the given arguments, and fails
otherwise. When the assertion fails, it prints the value of each argument. In
either case, the arguments are evaluated exactly once.

Here’s an example. Given

// Returns true if m and n have no common divisors except 1.
bool MutuallyPrime(int m, int n) { ... }

const int a = 3;
const int b = 4;
const int c = 10;

the assertion

 EXPECT_PRED2(MutuallyPrime, a, b);

will succeed, while the assertion

 EXPECT_PRED2(MutuallyPrime, b, c);

will fail with the message

MutuallyPrime(b, c) is false, where
b is 4
c is 10

NOTE:

	If you see a compiler error “no matching function to call” when using
ASSERT_PRED* or EXPECT_PRED*, please see
this for how to resolve it.

	Currently we only provide predicate assertions of arity <= 5. If you need
a higher-arity assertion, let us [https://github.com/google/googletest/issues] know.

Availability: Linux, Windows, Mac.

Using a Function That Returns an AssertionResult

While EXPECT_PRED*() and friends are handy for a quick job, the syntax is not
satisfactory: you have to use different macros for different arities, and it
feels more like Lisp than C++. The ::testing::AssertionResult class solves
this problem.

An AssertionResult object represents the result of an assertion (whether it’s
a success or a failure, and an associated message). You can create an
AssertionResult using one of these factory functions:

namespace testing {

// Returns an AssertionResult object to indicate that an assertion has
// succeeded.
AssertionResult AssertionSuccess();

// Returns an AssertionResult object to indicate that an assertion has
// failed.
AssertionResult AssertionFailure();

}

You can then use the << operator to stream messages to the AssertionResult
object.

To provide more readable messages in Boolean assertions (e.g. EXPECT_TRUE()),
write a predicate function that returns AssertionResult instead of bool. For
example, if you define IsEven() as:

::testing::AssertionResult IsEven(int n) {
 if ((n % 2) == 0)
 return ::testing::AssertionSuccess();
 else
 return ::testing::AssertionFailure() << n << " is odd";
}

instead of:

bool IsEven(int n) {
 return (n % 2) == 0;
}

the failed assertion EXPECT_TRUE(IsEven(Fib(4))) will print:

Value of: IsEven(Fib(4))
 Actual: false (3 is odd)
Expected: true

instead of a more opaque

Value of: IsEven(Fib(4))
 Actual: false
Expected: true

If you want informative messages in EXPECT_FALSE and ASSERT_FALSE as well
(one third of Boolean assertions in the Google code base are negative ones), and
are fine with making the predicate slower in the success case, you can supply a
success message:

::testing::AssertionResult IsEven(int n) {
 if ((n % 2) == 0)
 return ::testing::AssertionSuccess() << n << " is even";
 else
 return ::testing::AssertionFailure() << n << " is odd";
}

Then the statement EXPECT_FALSE(IsEven(Fib(6))) will print

 Value of: IsEven(Fib(6))
 Actual: true (8 is even)
 Expected: false

Availability: Linux, Windows, Mac.

Using a Predicate-Formatter

If you find the default message generated by (ASSERT|EXPECT)_PRED* and
(ASSERT|EXPECT)_(TRUE|FALSE) unsatisfactory, or some arguments to your
predicate do not support streaming to ostream, you can instead use the
following predicate-formatter assertions to fully customize how the message
is formatted:

Fatal assertion | Nonfatal assertion | Verifies
———————————————— | ———————————————— | ——–
ASSERT_PRED_FORMAT1(pred_format1, val1); | EXPECT_PRED_FORMAT1(pred_format1, val1); | pred_format1(val1) is successful
ASSERT_PRED_FORMAT2(pred_format2, val1, val2); | EXPECT_PRED_FORMAT2(pred_format2, val1, val2); | pred_format2(val1, val2) is successful
... | ... | …

The difference between this and the previous group of macros is that instead of
a predicate, (ASSERT|EXPECT)_PRED_FORMAT* take a predicate-formatter
(pred_formatn), which is a function or functor with the signature:

::testing::AssertionResult PredicateFormattern(const char* expr1,
 const char* expr2,
 ...
 const char* exprn,
 T1 val1,
 T2 val2,
 ...
 Tn valn);

where val1, val2, …, and valn are the values of the predicate arguments,
and expr1, expr2, …, and exprn are the corresponding expressions as they
appear in the source code. The types T1, T2, …, and Tn can be either
value types or reference types. For example, if an argument has type Foo, you
can declare it as either Foo or const Foo&, whichever is appropriate.

As an example, let’s improve the failure message in MutuallyPrime(), which was
used with EXPECT_PRED2():

// Returns the smallest prime common divisor of m and n,
// or 1 when m and n are mutually prime.
int SmallestPrimeCommonDivisor(int m, int n) { ... }

// A predicate-formatter for asserting that two integers are mutually prime.
::testing::AssertionResult AssertMutuallyPrime(const char* m_expr,
 const char* n_expr,
 int m,
 int n) {
 if (MutuallyPrime(m, n)) return ::testing::AssertionSuccess();

 return ::testing::AssertionFailure() << m_expr << " and " << n_expr
 << " (" << m << " and " << n << ") are not mutually prime, "
 << "as they have a common divisor " << SmallestPrimeCommonDivisor(m, n);
}

With this predicate-formatter, we can use

 EXPECT_PRED_FORMAT2(AssertMutuallyPrime, b, c);

to generate the message

b and c (4 and 10) are not mutually prime, as they have a common divisor 2.

As you may have realized, many of the built-in assertions we introduced earlier
are special cases of (EXPECT|ASSERT)_PRED_FORMAT*. In fact, most of them are
indeed defined using (EXPECT|ASSERT)_PRED_FORMAT*.

Availability: Linux, Windows, Mac.

Floating-Point Comparison

Comparing floating-point numbers is tricky. Due to round-off errors, it is very
unlikely that two floating-points will match exactly. Therefore, ASSERT_EQ ‘s
naive comparison usually doesn’t work. And since floating-points can have a wide
value range, no single fixed error bound works. It’s better to compare by a
fixed relative error bound, except for values close to 0 due to the loss of
precision there.

In general, for floating-point comparison to make sense, the user needs to
carefully choose the error bound. If they don’t want or care to, comparing in
terms of Units in the Last Place (ULPs) is a good default, and googletest
provides assertions to do this. Full details about ULPs are quite long; if you
want to learn more, see
here [https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/].

Floating-Point Macros

Fatal assertion	Nonfatal assertion	Verifies
——————————-	——————————	—————————————-
ASSERT_FLOAT_EQ(val1, val2);	EXPECT_FLOAT_EQ(val1,val2);	the two float values are almost equal
ASSERT_DOUBLE_EQ(val1, val2);	EXPECT_DOUBLE_EQ(val1, val2);	the two double values are almost equal

By “almost equal” we mean the values are within 4 ULP’s from each other.

NOTE: CHECK_DOUBLE_EQ() in base/logging.h uses a fixed absolute error bound,
so its result may differ from that of the googletest macros. That macro is
unsafe and has been deprecated. Please don’t use it any more.

The following assertions allow you to choose the acceptable error bound:

Fatal assertion	Nonfatal assertion	Verifies
————————————-	————————————-	————————-
ASSERT_NEAR(val1, val2, abs_error);	EXPECT_NEAR(val1, val2, abs_error);	the difference between val1 and val2 doesn’t exceed the given absolute error

Availability: Linux, Windows, Mac.

Floating-Point Predicate-Format Functions

Some floating-point operations are useful, but not that often used. In order to
avoid an explosion of new macros, we provide them as predicate-format functions
that can be used in predicate assertion macros (e.g. EXPECT_PRED_FORMAT2,
etc).

EXPECT_PRED_FORMAT2(::testing::FloatLE, val1, val2);
EXPECT_PRED_FORMAT2(::testing::DoubleLE, val1, val2);

Verifies that val1 is less than, or almost equal to, val2. You can replace
EXPECT_PRED_FORMAT2 in the above table with ASSERT_PRED_FORMAT2.

Availability: Linux, Windows, Mac.

Asserting Using gMock Matchers

Google-developed C++ mocking framework gMock comes with a
library of matchers for validating arguments passed to mock objects. A gMock
matcher is basically a predicate that knows how to describe itself. It can be
used in these assertion macros:

Fatal assertion	Nonfatal assertion	Verifies
——————————	——————————	———————
ASSERT_THAT(value, matcher);	EXPECT_THAT(value, matcher);	value matches matcher

For example, StartsWith(prefix) is a matcher that matches a string starting
with prefix, and you can write:

using ::testing::StartsWith;
...
 // Verifies that Foo() returns a string starting with "Hello".
 EXPECT_THAT(Foo(), StartsWith("Hello"));

Read this recipe in
the gMock Cookbook for more details.

gMock has a rich set of matchers. You can do many things googletest cannot do
alone with them. For a list of matchers gMock provides, read
this. Especially useful among them are
some protocol buffer matchers [https://github.com/google/nucleus/blob/master/nucleus/testing/protocol-buffer-matchers.h]. It’s easy to write
your own matchers too.

For example, you can use gMock’s
EqualsProto [https://github.com/google/nucleus/blob/master/nucleus/testing/protocol-buffer-matchers.h]
to compare protos in your tests:

#include "testing/base/public/gmock.h"
using ::testing::EqualsProto;
...
 EXPECT_THAT(actual_proto, EqualsProto("foo: 123 bar: 'xyz'"));
 EXPECT_THAT(*actual_proto_ptr, EqualsProto(expected_proto));

gMock is bundled with googletest, so you don’t need to add any build dependency
in order to take advantage of this. Just include "testing/base/public/gmock.h"
and you’re ready to go.

Availability: Linux, Windows, and Mac.

More String Assertions

(Please read the previous section first if you haven’t.)

You can use the gMock string matchers
with EXPECT_THAT() or ASSERT_THAT() to do more string comparison tricks
(sub-string, prefix, suffix, regular expression, and etc). For example,

using ::testing::HasSubstr;
using ::testing::MatchesRegex;
...
 ASSERT_THAT(foo_string, HasSubstr("needle"));
 EXPECT_THAT(bar_string, MatchesRegex("\\w*\\d+"));

Availability: Linux, Windows, Mac.

If the string contains a well-formed HTML or XML document, you can check whether
its DOM tree matches an XPath
expression [http://www.w3.org/TR/xpath/#contents]:

// Currently still in //template/prototemplate/testing:xpath_matcher
#include "template/prototemplate/testing/xpath_matcher.h"
using prototemplate::testing::MatchesXPath;
EXPECT_THAT(html_string, MatchesXPath("//a[text()='click here']"));

Availability: Linux.

Windows HRESULT assertions

These assertions test for HRESULT success or failure.

Fatal assertion | Nonfatal assertion | Verifies
————————————– | ————————————– | ——–
ASSERT_HRESULT_SUCCEEDED(expression) | EXPECT_HRESULT_SUCCEEDED(expression) | expression is a success HRESULT
ASSERT_HRESULT_FAILED(expression) | EXPECT_HRESULT_FAILED(expression) | expression is a failure HRESULT

The generated output contains the human-readable error message associated with
the HRESULT code returned by expression.

You might use them like this:

CComPtr<IShellDispatch2> shell;
ASSERT_HRESULT_SUCCEEDED(shell.CoCreateInstance(L"Shell.Application"));
CComVariant empty;
ASSERT_HRESULT_SUCCEEDED(shell->ShellExecute(CComBSTR(url), empty, empty, empty, empty));

Availability: Windows.

Type Assertions

You can call the function

::testing::StaticAssertTypeEq<T1, T2>();

to assert that types T1 and T2 are the same. The function does nothing if
the assertion is satisfied. If the types are different, the function call will
fail to compile, and the compiler error message will likely (depending on the
compiler) show you the actual values of T1 and T2. This is mainly useful
inside template code.

Caveat: When used inside a member function of a class template or a function
template, StaticAssertTypeEq<T1, T2>() is effective only if the function is
instantiated. For example, given:

template <typename T> class Foo {
 public:
 void Bar() { ::testing::StaticAssertTypeEq<int, T>(); }
};

the code:

void Test1() { Foo<bool> foo; }

will not generate a compiler error, as Foo<bool>::Bar() is never actually
instantiated. Instead, you need:

void Test2() { Foo<bool> foo; foo.Bar(); }

to cause a compiler error.

Availability: Linux, Windows, Mac.

Assertion Placement

You can use assertions in any C++ function. In particular, it doesn’t have to be
a method of the test fixture class. The one constraint is that assertions that
generate a fatal failure (FAIL* and ASSERT_*) can only be used in
void-returning functions. This is a consequence of Google’s not using
exceptions. By placing it in a non-void function you’ll get a confusing compile
error like "error: void value not ignored as it ought to be" or "cannot initialize return object of type 'bool' with an rvalue of type 'void'" or
"error: no viable conversion from 'void' to 'string'".

If you need to use fatal assertions in a function that returns non-void, one
option is to make the function return the value in an out parameter instead. For
example, you can rewrite T2 Foo(T1 x) to void Foo(T1 x, T2* result). You
need to make sure that *result contains some sensible value even when the
function returns prematurely. As the function now returns void, you can use
any assertion inside of it.

If changing the function’s type is not an option, you should just use assertions
that generate non-fatal failures, such as ADD_FAILURE* and EXPECT_*.

NOTE: Constructors and destructors are not considered void-returning functions,
according to the C++ language specification, and so you may not use fatal
assertions in them. You’ll get a compilation error if you try. A simple
workaround is to transfer the entire body of the constructor or destructor to a
private void-returning method. However, you should be aware that a fatal
assertion failure in a constructor does not terminate the current test, as your
intuition might suggest; it merely returns from the constructor early, possibly
leaving your object in a partially-constructed state. Likewise, a fatal
assertion failure in a destructor may leave your object in a
partially-destructed state. Use assertions carefully in these situations!

Teaching googletest How to Print Your Values

When a test assertion such as EXPECT_EQ fails, googletest prints the argument
values to help you debug. It does this using a user-extensible value printer.

This printer knows how to print built-in C++ types, native arrays, STL
containers, and any type that supports the << operator. For other types, it
prints the raw bytes in the value and hopes that you the user can figure it out.

As mentioned earlier, the printer is extensible. That means you can teach it
to do a better job at printing your particular type than to dump the bytes. To
do that, define << for your type:

// Streams are allowed only for logging. Don't include this for
// any other purpose.
#include <ostream>

namespace foo {

class Bar { // We want googletest to be able to print instances of this.
...
 // Create a free inline friend function.
 friend std::ostream& operator<<(std::ostream& os, const Bar& bar) {
 return os << bar.DebugString(); // whatever needed to print bar to os
 }
};

// If you can't declare the function in the class it's important that the
// << operator is defined in the SAME namespace that defines Bar. C++'s look-up
// rules rely on that.
std::ostream& operator<<(std::ostream& os, const Bar& bar) {
 return os << bar.DebugString(); // whatever needed to print bar to os
}

} // namespace foo

Sometimes, this might not be an option: your team may consider it bad style to
have a << operator for Bar, or Bar may already have a << operator that
doesn’t do what you want (and you cannot change it). If so, you can instead
define a PrintTo() function like this:

// Streams are allowed only for logging. Don't include this for
// any other purpose.
#include <ostream>

namespace foo {

class Bar {
 ...
 friend void PrintTo(const Bar& bar, std::ostream* os) {
 *os << bar.DebugString(); // whatever needed to print bar to os
 }
};

// If you can't declare the function in the class it's important that PrintTo()
// is defined in the SAME namespace that defines Bar. C++'s look-up rules rely
// on that.
void PrintTo(const Bar& bar, std::ostream* os) {
 *os << bar.DebugString(); // whatever needed to print bar to os
}

} // namespace foo

If you have defined both << and PrintTo(), the latter will be used when
googletest is concerned. This allows you to customize how the value appears in
googletest’s output without affecting code that relies on the behavior of its
<< operator.

If you want to print a value x using googletest’s value printer yourself, just
call ::testing::PrintToString(x), which returns an std::string:

vector<pair<Bar, int> > bar_ints = GetBarIntVector();

EXPECT_TRUE(IsCorrectBarIntVector(bar_ints))
 << "bar_ints = " << ::testing::PrintToString(bar_ints);

Death Tests

In many applications, there are assertions that can cause application failure if
a condition is not met. These sanity checks, which ensure that the program is in
a known good state, are there to fail at the earliest possible time after some
program state is corrupted. If the assertion checks the wrong condition, then
the program may proceed in an erroneous state, which could lead to memory
corruption, security holes, or worse. Hence it is vitally important to test that
such assertion statements work as expected.

Since these precondition checks cause the processes to die, we call such tests
death tests. More generally, any test that checks that a program terminates
(except by throwing an exception) in an expected fashion is also a death test.

Note that if a piece of code throws an exception, we don’t consider it “death”
for the purpose of death tests, as the caller of the code could catch the
exception and avoid the crash. If you want to verify exceptions thrown by your
code, see Exception Assertions.

If you want to test EXPECT_*()/ASSERT_*() failures in your test code, see
Catching Failures

How to Write a Death Test

googletest has the following macros to support death tests:

Fatal assertion | Nonfatal assertion | Verifies
———————————————- | ———————————————- | ——–
ASSERT_DEATH(statement, regex); | EXPECT_DEATH(statement, regex); | statement crashes with the given error
ASSERT_DEATH_IF_SUPPORTED(statement, regex); | EXPECT_DEATH_IF_SUPPORTED(statement, regex); | if death tests are supported, verifies that statement crashes with the given error; otherwise verifies nothing
ASSERT_EXIT(statement, predicate, regex); | EXPECT_EXIT(statement, predicate, regex); | statement exits with the given error, and its exit code matches predicate

where statement is a statement that is expected to cause the process to die,
predicate is a function or function object that evaluates an integer exit
status, and regex is a (Perl) regular expression that the stderr output of
statement is expected to match. Note that statement can be any valid
statement (including compound statement) and doesn’t have to be an
expression.

As usual, the ASSERT variants abort the current test function, while the
EXPECT variants do not.

NOTE: We use the word “crash” here to mean that the process terminates with a
non-zero exit status code. There are two possibilities: either the process
has called exit() or _exit() with a non-zero value, or it may be killed by
a signal.

This means that if *statement* terminates the process with a 0 exit code, it
is not considered a crash by EXPECT_DEATH. Use EXPECT_EXIT instead if
this is the case, or if you want to restrict the exit code more precisely.

A predicate here must accept an int and return a bool. The death test
succeeds only if the predicate returns true. googletest defines a few
predicates that handle the most common cases:

::testing::ExitedWithCode(exit_code)

This expression is true if the program exited normally with the given exit
code.

::testing::KilledBySignal(signal_number) // Not available on Windows.

This expression is true if the program was killed by the given signal.

The *_DEATH macros are convenient wrappers for *_EXIT that use a predicate
that verifies the process’ exit code is non-zero.

Note that a death test only cares about three things:

	does statement abort or exit the process?

	(in the case of ASSERT_EXIT and EXPECT_EXIT) does the exit status
satisfy predicate? Or (in the case of ASSERT_DEATH and EXPECT_DEATH)
is the exit status non-zero? And

	does the stderr output match regex?

In particular, if statement generates an ASSERT_* or EXPECT_* failure, it
will not cause the death test to fail, as googletest assertions don’t abort
the process.

To write a death test, simply use one of the above macros inside your test
function. For example,

TEST(MyDeathTest, Foo) {
 // This death test uses a compound statement.
 ASSERT_DEATH({
 int n = 5;
 Foo(&n);
 }, "Error on line .* of Foo()");
}

TEST(MyDeathTest, NormalExit) {
 EXPECT_EXIT(NormalExit(), ::testing::ExitedWithCode(0), "Success");
}

TEST(MyDeathTest, KillMyself) {
 EXPECT_EXIT(KillMyself(), ::testing::KilledBySignal(SIGKILL),
 "Sending myself unblockable signal");
}

verifies that:

	calling Foo(5) causes the process to die with the given error message,

	calling NormalExit() causes the process to print "Success" to stderr and
exit with exit code 0, and

	calling KillMyself() kills the process with signal SIGKILL.

The test function body may contain other assertions and statements as well, if
necessary.

Death Test Naming

IMPORTANT: We strongly recommend you to follow the convention of naming your
test case (not test) *DeathTest when it contains a death test, as
demonstrated in the above example. The Death Tests And
Threads section below explains why.

If a test fixture class is shared by normal tests and death tests, you can use
using or typedef to introduce an alias for the fixture class and avoid
duplicating its code:

class FooTest : public ::testing::Test { ... };

using FooDeathTest = FooTest;

TEST_F(FooTest, DoesThis) {
 // normal test
}

TEST_F(FooDeathTest, DoesThat) {
 // death test
}

Availability: Linux, Windows (requires MSVC 8.0 or above), Cygwin, and Mac

Regular Expression Syntax

On POSIX systems (e.g. Linux, Cygwin, and Mac), googletest uses the
POSIX extended regular expression [http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04]
syntax. To learn about this syntax, you may want to read this
Wikipedia entry [http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions].

On Windows, googletest uses its own simple regular expression implementation. It
lacks many features. For example, we don’t support union ("x|y"), grouping
("(xy)"), brackets ("[xy]"), and repetition count ("x{5,7}"), among
others. Below is what we do support (A denotes a literal character, period
(.), or a single \\ escape sequence; x and y denote regular
expressions.):

Expression | Meaning
———- | ————————————————————–
c | matches any literal character c
\\d | matches any decimal digit
\\D | matches any character that’s not a decimal digit
\\f | matches \f
\\n | matches \n
\\r | matches \r
\\s | matches any ASCII whitespace, including \n
\\S | matches any character that’s not a whitespace
\\t | matches \t
\\v | matches \v
\\w | matches any letter, _, or decimal digit
\\W | matches any character that \\w doesn’t match
\\c | matches any literal character c, which must be a punctuation
. | matches any single character except \n
A? | matches 0 or 1 occurrences of A
A* | matches 0 or many occurrences of A
A+ | matches 1 or many occurrences of A
^ | matches the beginning of a string (not that of each line)
$ | matches the end of a string (not that of each line)
xy | matches x followed by y

To help you determine which capability is available on your system, googletest
defines macros to govern which regular expression it is using. The macros are:

`GTEST_USES_PCRE=1`, or
 `GTEST_USES_SIMPLE_RE=1` or `GTEST_USES_POSIX_RE=1`. If
you want your death tests to work in all cases, you can either `#if` on these
macros or use the more limited syntax only.

How It Works

Under the hood, ASSERT_EXIT() spawns a new process and executes the death test
statement in that process. The details of how precisely that happens depend on
the platform and the variable ::testing::GTEST_FLAG(death_test_style) (which is
initialized from the command-line flag --gtest_death_test_style).

	On POSIX systems, fork() (or clone() on Linux) is used to spawn the
child, after which:

	If the variable’s value is "fast", the death test statement is
immediately executed.

	If the variable’s value is "threadsafe", the child process re-executes
the unit test binary just as it was originally invoked, but with some
extra flags to cause just the single death test under consideration to
be run.

	On Windows, the child is spawned using the CreateProcess() API, and
re-executes the binary to cause just the single death test under
consideration to be run - much like the threadsafe mode on POSIX.

Other values for the variable are illegal and will cause the death test to fail.
Currently, the flag’s default value is
“fast”. However, we reserve
the right to change it in the future. Therefore, your tests should not depend on
this. In either case, the parent process waits for the child process to
complete, and checks that

	the child’s exit status satisfies the predicate, and

	the child’s stderr matches the regular expression.

If the death test statement runs to completion without dying, the child process
will nonetheless terminate, and the assertion fails.

Death Tests And Threads

The reason for the two death test styles has to do with thread safety. Due to
well-known problems with forking in the presence of threads, death tests should
be run in a single-threaded context. Sometimes, however, it isn’t feasible to
arrange that kind of environment. For example, statically-initialized modules
may start threads before main is ever reached. Once threads have been created,
it may be difficult or impossible to clean them up.

googletest has three features intended to raise awareness of threading issues.

	A warning is emitted if multiple threads are running when a death test is
encountered.

	Test cases with a name ending in “DeathTest” are run before all other tests.

	It uses clone() instead of fork() to spawn the child process on Linux
(clone() is not available on Cygwin and Mac), as fork() is more likely
to cause the child to hang when the parent process has multiple threads.

It’s perfectly fine to create threads inside a death test statement; they are
executed in a separate process and cannot affect the parent.

Death Test Styles

The “threadsafe” death test style was introduced in order to help mitigate the
risks of testing in a possibly multithreaded environment. It trades increased
test execution time (potentially dramatically so) for improved thread safety.

The automated testing framework does not set the style flag. You can choose a
particular style of death tests by setting the flag programmatically:

testing::FLAGS_gtest_death_test_style="threadsafe"

You can do this in main() to set the style for all death tests in the binary,
or in individual tests. Recall that flags are saved before running each test and
restored afterwards, so you need not do that yourself. For example:

int main(int argc, char** argv) {
 InitGoogle(argv[0], &argc, &argv, true);
 ::testing::FLAGS_gtest_death_test_style = "fast";
 return RUN_ALL_TESTS();
}

TEST(MyDeathTest, TestOne) {
 ::testing::FLAGS_gtest_death_test_style = "threadsafe";
 // This test is run in the "threadsafe" style:
 ASSERT_DEATH(ThisShouldDie(), "");
}

TEST(MyDeathTest, TestTwo) {
 // This test is run in the "fast" style:
 ASSERT_DEATH(ThisShouldDie(), "");
}

Caveats

The statement argument of ASSERT_EXIT() can be any valid C++ statement. If
it leaves the current function via a return statement or by throwing an
exception, the death test is considered to have failed. Some googletest macros
may return from the current function (e.g. ASSERT_TRUE()), so be sure to avoid
them in statement.

Since statement runs in the child process, any in-memory side effect (e.g.
modifying a variable, releasing memory, etc) it causes will not be observable
in the parent process. In particular, if you release memory in a death test,
your program will fail the heap check as the parent process will never see the
memory reclaimed. To solve this problem, you can

	try not to free memory in a death test;

	free the memory again in the parent process; or

	do not use the heap checker in your program.

Due to an implementation detail, you cannot place multiple death test assertions
on the same line; otherwise, compilation will fail with an unobvious error
message.

Despite the improved thread safety afforded by the “threadsafe” style of death
test, thread problems such as deadlock are still possible in the presence of
handlers registered with pthread_atfork(3).

Using Assertions in Sub-routines

Adding Traces to Assertions

If a test sub-routine is called from several places, when an assertion inside it
fails, it can be hard to tell which invocation of the sub-routine the failure is
from.
You can alleviate this problem using extra logging or custom failure messages,
but that usually clutters up your tests. A better solution is to use the
SCOPED_TRACE macro or the ScopedTrace utility:

SCOPED_TRACE(message);
ScopedTrace trace("file_path", line_number, message);

where message can be anything streamable to std::ostream. SCOPED_TRACE
macro will cause the current file name, line number, and the given message to be
added in every failure message. ScopedTrace accepts explicit file name and
line number in arguments, which is useful for writing test helpers. The effect
will be undone when the control leaves the current lexical scope.

For example,

10: void Sub1(int n) {
11: EXPECT_EQ(1, Bar(n));
12: EXPECT_EQ(2, Bar(n + 1));
13: }
14:
15: TEST(FooTest, Bar) {
16: {
17: SCOPED_TRACE("A"); // This trace point will be included in
18: // every failure in this scope.
19: Sub1(1);
20: }
21: // Now it won't.
22: Sub1(9);
23: }

could result in messages like these:

path/to/foo_test.cc:11: Failure
Value of: Bar(n)
Expected: 1
 Actual: 2
 Trace:
path/to/foo_test.cc:17: A

path/to/foo_test.cc:12: Failure
Value of: Bar(n + 1)
Expected: 2
 Actual: 3

Without the trace, it would’ve been difficult to know which invocation of
Sub1() the two failures come from respectively. (You could add

an extra message to each assertion in Sub1() to indicate the value of n, but
that’s tedious.)

Some tips on using SCOPED_TRACE:

	With a suitable message, it’s often enough to use SCOPED_TRACE at the
beginning of a sub-routine, instead of at each call site.

	When calling sub-routines inside a loop, make the loop iterator part of the
message in SCOPED_TRACE such that you can know which iteration the failure
is from.

	Sometimes the line number of the trace point is enough for identifying the
particular invocation of a sub-routine. In this case, you don’t have to
choose a unique message for SCOPED_TRACE. You can simply use "".

	You can use SCOPED_TRACE in an inner scope when there is one in the outer
scope. In this case, all active trace points will be included in the failure
messages, in reverse order they are encountered.

	The trace dump is clickable in Emacs - hit return on a line number and
you’ll be taken to that line in the source file!

Availability: Linux, Windows, Mac.

Propagating Fatal Failures

A common pitfall when using ASSERT_* and FAIL* is not understanding that
when they fail they only abort the current function, not the entire test. For
example, the following test will segfault:

void Subroutine() {
 // Generates a fatal failure and aborts the current function.
 ASSERT_EQ(1, 2);

 // The following won't be executed.
 ...
}

TEST(FooTest, Bar) {
 Subroutine(); // The intended behavior is for the fatal failure
 // in Subroutine() to abort the entire test.

 // The actual behavior: the function goes on after Subroutine() returns.
 int* p = NULL;
 *p = 3; // Segfault!
}

To alleviate this, googletest provides three different solutions. You could use
either exceptions, the (ASSERT|EXPECT)_NO_FATAL_FAILURE assertions or the
HasFatalFailure() function. They are described in the following two
subsections.

Asserting on Subroutines with an exception

The following code can turn ASSERT-failure into an exception:

class ThrowListener : public testing::EmptyTestEventListener {
 void OnTestPartResult(const testing::TestPartResult& result) override {
 if (result.type() == testing::TestPartResult::kFatalFailure) {
 throw testing::AssertionException(result);
 }
 }
};
int main(int argc, char** argv) {
 ...
 testing::UnitTest::GetInstance()->listeners().Append(new ThrowListener);
 return RUN_ALL_TESTS();
}

This listener should be added after other listeners if you have any, otherwise
they won’t see failed OnTestPartResult.

Asserting on Subroutines

As shown above, if your test calls a subroutine that has an ASSERT_* failure
in it, the test will continue after the subroutine returns. This may not be what
you want.

Often people want fatal failures to propagate like exceptions. For that
googletest offers the following macros:

Fatal assertion | Nonfatal assertion | Verifies
————————————- | ————————————- | ——–
ASSERT_NO_FATAL_FAILURE(statement); | EXPECT_NO_FATAL_FAILURE(statement); | statement doesn’t generate any new fatal failures in the current thread.

Only failures in the thread that executes the assertion are checked to determine
the result of this type of assertions. If statement creates new threads,
failures in these threads are ignored.

Examples:

ASSERT_NO_FATAL_FAILURE(Foo());

int i;
EXPECT_NO_FATAL_FAILURE({
 i = Bar();
});

Availability: Linux, Windows, Mac. Assertions from multiple threads are
currently not supported on Windows.

Checking for Failures in the Current Test

HasFatalFailure() in the ::testing::Test class returns true if an
assertion in the current test has suffered a fatal failure. This allows
functions to catch fatal failures in a sub-routine and return early.

class Test {
 public:
 ...
 static bool HasFatalFailure();
};

The typical usage, which basically simulates the behavior of a thrown exception,
is:

TEST(FooTest, Bar) {
 Subroutine();
 // Aborts if Subroutine() had a fatal failure.
 if (HasFatalFailure()) return;

 // The following won't be executed.
 ...
}

If HasFatalFailure() is used outside of TEST() , TEST_F() , or a test
fixture, you must add the ::testing::Test:: prefix, as in:

if (::testing::Test::HasFatalFailure()) return;

Similarly, HasNonfatalFailure() returns true if the current test has at
least one non-fatal failure, and HasFailure() returns true if the current
test has at least one failure of either kind.

Availability: Linux, Windows, Mac.

Logging Additional Information

In your test code, you can call RecordProperty("key", value) to log additional
information, where value can be either a string or an int. The last value
recorded for a key will be emitted to the XML output if you
specify one. For example, the test

TEST_F(WidgetUsageTest, MinAndMaxWidgets) {
 RecordProperty("MaximumWidgets", ComputeMaxUsage());
 RecordProperty("MinimumWidgets", ComputeMinUsage());
}

will output XML like this:

 ...
 <testcase name="MinAndMaxWidgets" status="run" time="0.006" classname="WidgetUsageTest" MaximumWidgets="12" MinimumWidgets="9" />
 ...

NOTE:

	RecordProperty() is a static member of the Test class. Therefore it
needs to be prefixed with ::testing::Test:: if used outside of the
TEST body and the test fixture class.

	key must be a valid XML attribute name, and cannot conflict with the
ones already used by googletest (name, status, time, classname,
type_param, and value_param).

	Calling RecordProperty() outside of the lifespan of a test is allowed.
If it’s called outside of a test but between a test case’s
SetUpTestCase() and TearDownTestCase() methods, it will be attributed
to the XML element for the test case. If it’s called outside of all test
cases (e.g. in a test environment), it will be attributed to the top-level
XML element.

Availability: Linux, Windows, Mac.

Sharing Resources Between Tests in the Same Test Case

googletest creates a new test fixture object for each test in order to make
tests independent and easier to debug. However, sometimes tests use resources
that are expensive to set up, making the one-copy-per-test model prohibitively
expensive.

If the tests don’t change the resource, there’s no harm in their sharing a
single resource copy. So, in addition to per-test set-up/tear-down, googletest
also supports per-test-case set-up/tear-down. To use it:

	In your test fixture class (say FooTest), declare as static some member
variables to hold the shared resources.

	Outside your test fixture class (typically just below it), define those
member variables, optionally giving them initial values.

	In the same test fixture class, define a static void SetUpTestCase()
function (remember not to spell it as SetupTestCase with a small u!)
to set up the shared resources and a static void TearDownTestCase()
function to tear them down.

That’s it! googletest automatically calls SetUpTestCase() before running the
first test in the FooTest test case (i.e. before creating the first
FooTest object), and calls TearDownTestCase() after running the last test
in it (i.e. after deleting the last FooTest object). In between, the tests can
use the shared resources.

Remember that the test order is undefined, so your code can’t depend on a test
preceding or following another. Also, the tests must either not modify the state
of any shared resource, or, if they do modify the state, they must restore the
state to its original value before passing control to the next test.

Here’s an example of per-test-case set-up and tear-down:

class FooTest : public ::testing::Test {
 protected:
 // Per-test-case set-up.
 // Called before the first test in this test case.
 // Can be omitted if not needed.
 static void SetUpTestCase() {
 shared_resource_ = new ...;
 }

 // Per-test-case tear-down.
 // Called after the last test in this test case.
 // Can be omitted if not needed.
 static void TearDownTestCase() {
 delete shared_resource_;
 shared_resource_ = NULL;
 }

 // You can define per-test set-up logic as usual.
 virtual void SetUp() { ... }

 // You can define per-test tear-down logic as usual.
 virtual void TearDown() { ... }

 // Some expensive resource shared by all tests.
 static T* shared_resource_;
};

T* FooTest::shared_resource_ = NULL;

TEST_F(FooTest, Test1) {
 ... you can refer to shared_resource_ here ...
}

TEST_F(FooTest, Test2) {
 ... you can refer to shared_resource_ here ...
}

NOTE: Though the above code declares SetUpTestCase() protected, it may
sometimes be necessary to declare it public, such as when using it with
TEST_P.

Availability: Linux, Windows, Mac.

Global Set-Up and Tear-Down

Just as you can do set-up and tear-down at the test level and the test case
level, you can also do it at the test program level. Here’s how.

First, you subclass the ::testing::Environment class to define a test
environment, which knows how to set-up and tear-down:

class Environment {
 public:
 virtual ~Environment() {}

 // Override this to define how to set up the environment.
 virtual void SetUp() {}

 // Override this to define how to tear down the environment.
 virtual void TearDown() {}
};

Then, you register an instance of your environment class with googletest by
calling the ::testing::AddGlobalTestEnvironment() function:

Environment* AddGlobalTestEnvironment(Environment* env);

Now, when RUN_ALL_TESTS() is called, it first calls the SetUp() method of
the environment object, then runs the tests if there was no fatal failures, and
finally calls TearDown() of the environment object.

It’s OK to register multiple environment objects. In this case, their SetUp()
will be called in the order they are registered, and their TearDown() will be
called in the reverse order.

Note that googletest takes ownership of the registered environment objects.
Therefore do not delete them by yourself.

You should call AddGlobalTestEnvironment() before RUN_ALL_TESTS() is called,
probably in main(). If you use gtest_main, you need to call this before
main() starts for it to take effect. One way to do this is to define a global
variable like this:

::testing::Environment* const foo_env =
 ::testing::AddGlobalTestEnvironment(new FooEnvironment);

However, we strongly recommend you to write your own main() and call
AddGlobalTestEnvironment() there, as relying on initialization of global
variables makes the code harder to read and may cause problems when you register
multiple environments from different translation units and the environments have
dependencies among them (remember that the compiler doesn’t guarantee the order
in which global variables from different translation units are initialized).

Value-Parameterized Tests

Value-parameterized tests allow you to test your code with different
parameters without writing multiple copies of the same test. This is useful in a
number of situations, for example:

	You have a piece of code whose behavior is affected by one or more
command-line flags. You want to make sure your code performs correctly for
various values of those flags.

	You want to test different implementations of an OO interface.

	You want to test your code over various inputs (a.k.a. data-driven testing).
This feature is easy to abuse, so please exercise your good sense when doing
it!

How to Write Value-Parameterized Tests

To write value-parameterized tests, first you should define a fixture class. It
must be derived from both ::testing::Test and
::testing::WithParamInterface<T> (the latter is a pure interface), where T
is the type of your parameter values. For convenience, you can just derive the
fixture class from ::testing::TestWithParam<T>, which itself is derived from
both ::testing::Test and ::testing::WithParamInterface<T>. T can be any
copyable type. If it’s a raw pointer, you are responsible for managing the
lifespan of the pointed values.

NOTE: If your test fixture defines SetUpTestCase() or TearDownTestCase()
they must be declared public rather than protected in order to use
TEST_P.

class FooTest :
 public ::testing::TestWithParam<const char*> {
 // You can implement all the usual fixture class members here.
 // To access the test parameter, call GetParam() from class
 // TestWithParam<T>.
};

// Or, when you want to add parameters to a pre-existing fixture class:
class BaseTest : public ::testing::Test {
 ...
};
class BarTest : public BaseTest,
 public ::testing::WithParamInterface<const char*> {
 ...
};

Then, use the TEST_P macro to define as many test patterns using this fixture
as you want. The _P suffix is for “parameterized” or “pattern”, whichever you
prefer to think.

TEST_P(FooTest, DoesBlah) {
 // Inside a test, access the test parameter with the GetParam() method
 // of the TestWithParam<T> class:
 EXPECT_TRUE(foo.Blah(GetParam()));
 ...
}

TEST_P(FooTest, HasBlahBlah) {
 ...
}

Finally, you can use INSTANTIATE_TEST_CASE_P to instantiate the test case with
any set of parameters you want. googletest defines a number of functions for
generating test parameters. They return what we call (surprise!) parameter
generators. Here is a summary of them, which are all in the testing
namespace:

Parameter Generator	Behavior
—————————-	——————————————-
Range(begin, end [, step])	Yields values {begin, begin+step, begin+step+step, ...}. The values do not include end. step defaults to 1.
Values(v1, v2, ..., vN)	Yields values {v1, v2, ..., vN}.
ValuesIn(container) and ValuesIn(begin,end)	Yields values from a C-style array, an STL-style container, or an iterator range [begin, end).
Bool()	Yields sequence {false, true}.
Combine(g1, g2, ..., gN)	Yields all combinations (Cartesian product) as std::tuples of the values generated by the N generators.

For more details, see the comments at the definitions of these functions.

The following statement will instantiate tests from the FooTest test case each
with parameter values "meeny", "miny", and "moe".

INSTANTIATE_TEST_CASE_P(InstantiationName,
 FooTest,
 ::testing::Values("meeny", "miny", "moe"));

NOTE: The code above must be placed at global or namespace scope, not at
function scope.

NOTE: Don’t forget this step! If you do your test will silently pass, but none
of its cases will ever run!

To distinguish different instances of the pattern (yes, you can instantiate it
more than once), the first argument to INSTANTIATE_TEST_CASE_P is a prefix
that will be added to the actual test case name. Remember to pick unique
prefixes for different instantiations. The tests from the instantiation above
will have these names:

	InstantiationName/FooTest.DoesBlah/0 for "meeny"

	InstantiationName/FooTest.DoesBlah/1 for "miny"

	InstantiationName/FooTest.DoesBlah/2 for "moe"

	InstantiationName/FooTest.HasBlahBlah/0 for "meeny"

	InstantiationName/FooTest.HasBlahBlah/1 for "miny"

	InstantiationName/FooTest.HasBlahBlah/2 for "moe"

You can use these names in --gtest_filter.

This statement will instantiate all tests from FooTest again, each with
parameter values "cat" and "dog":

const char* pets[] = {"cat", "dog"};
INSTANTIATE_TEST_CASE_P(AnotherInstantiationName, FooTest,
 ::testing::ValuesIn(pets));

The tests from the instantiation above will have these names:

	AnotherInstantiationName/FooTest.DoesBlah/0 for "cat"

	AnotherInstantiationName/FooTest.DoesBlah/1 for "dog"

	AnotherInstantiationName/FooTest.HasBlahBlah/0 for "cat"

	AnotherInstantiationName/FooTest.HasBlahBlah/1 for "dog"

Please note that INSTANTIATE_TEST_CASE_P will instantiate all tests in the
given test case, whether their definitions come before or after the
INSTANTIATE_TEST_CASE_P statement.

You can see sample7_unittest.cc and sample8_unittest.cc for more examples.

Availability: Linux, Windows (requires MSVC 8.0 or above), Mac

Creating Value-Parameterized Abstract Tests

In the above, we define and instantiate FooTest in the same source file.
Sometimes you may want to define value-parameterized tests in a library and let
other people instantiate them later. This pattern is known as abstract tests.
As an example of its application, when you are designing an interface you can
write a standard suite of abstract tests (perhaps using a factory function as
the test parameter) that all implementations of the interface are expected to
pass. When someone implements the interface, they can instantiate your suite to
get all the interface-conformance tests for free.

To define abstract tests, you should organize your code like this:

	Put the definition of the parameterized test fixture class (e.g. FooTest)
in a header file, say foo_param_test.h. Think of this as declaring your
abstract tests.

	Put the TEST_P definitions in foo_param_test.cc, which includes
foo_param_test.h. Think of this as implementing your abstract tests.

Once they are defined, you can instantiate them by including foo_param_test.h,
invoking INSTANTIATE_TEST_CASE_P(), and depending on the library target that
contains foo_param_test.cc. You can instantiate the same abstract test case
multiple times, possibly in different source files.

Specifying Names for Value-Parameterized Test Parameters

The optional last argument to INSTANTIATE_TEST_CASE_P() allows the user to
specify a function or functor that generates custom test name suffixes based on
the test parameters. The function should accept one argument of type
testing::TestParamInfo<class ParamType>, and return std::string.

testing::PrintToStringParamName is a builtin test suffix generator that
returns the value of testing::PrintToString(GetParam()). It does not work for
std::string or C strings.

NOTE: test names must be non-empty, unique, and may only contain ASCII
alphanumeric characters. In particular, they should not contain
underscores [https://g3doc.corp.google.com/third_party/googletest/googletest/g3doc/faq.md#no-underscores].

class MyTestCase : public testing::TestWithParam<int> {};

TEST_P(MyTestCase, MyTest)
{
 std::cout << "Example Test Param: " << GetParam() << std::endl;
}

INSTANTIATE_TEST_CASE_P(MyGroup, MyTestCase, testing::Range(0, 10),
 testing::PrintToStringParamName());

Typed Tests

 Googletest FAQ

Googletest FAQ

Why should test case names and test names not contain underscore?

Underscore (_) is special, as C++ reserves the following to be used by the
compiler and the standard library:

	any identifier that starts with an _ followed by an upper-case letter, and

	any identifier that contains two consecutive underscores (i.e. __)
anywhere in its name.

User code is prohibited from using such identifiers.

Now let’s look at what this means for TEST and TEST_F.

Currently TEST(TestCaseName, TestName) generates a class named
TestCaseName_TestName_Test. What happens if TestCaseName or TestName
contains _?

	If TestCaseName starts with an _ followed by an upper-case letter (say,
_Foo), we end up with _Foo_TestName_Test, which is reserved and thus
invalid.

	If TestCaseName ends with an _ (say, Foo_), we get
Foo__TestName_Test, which is invalid.

	If TestName starts with an _ (say, _Bar), we get
TestCaseName__Bar_Test, which is invalid.

	If TestName ends with an _ (say, Bar_), we get
TestCaseName_Bar__Test, which is invalid.

So clearly TestCaseName and TestName cannot start or end with _ (Actually,
TestCaseName can start with _ – as long as the _ isn’t followed by an
upper-case letter. But that’s getting complicated. So for simplicity we just say
that it cannot start with _.).

It may seem fine for TestCaseName and TestName to contain _ in the middle.
However, consider this:

TEST(Time, Flies_Like_An_Arrow) { ... }
TEST(Time_Flies, Like_An_Arrow) { ... }

Now, the two TESTs will both generate the same class
(Time_Flies_Like_An_Arrow_Test). That’s not good.

So for simplicity, we just ask the users to avoid _ in TestCaseName and
TestName. The rule is more constraining than necessary, but it’s simple and
easy to remember. It also gives googletest some wiggle room in case its
implementation needs to change in the future.

If you violate the rule, there may not be immediate consequences, but your test
may (just may) break with a new compiler (or a new version of the compiler you
are using) or with a new version of googletest. Therefore it’s best to follow
the rule.

Why does googletest support EXPECT_EQ(NULL, ptr) and ASSERT_EQ(NULL, ptr) but not EXPECT_NE(NULL, ptr) and ASSERT_NE(NULL, ptr)?

First of all you can use EXPECT_NE(nullptr, ptr) and ASSERT_NE(nullptr, ptr). This is the preferred syntax in the style guide because nullptr does not
have the type problems that NULL does. Which is why NULL does not work.

Due to some peculiarity of C++, it requires some non-trivial template meta
programming tricks to support using NULL as an argument of the EXPECT_XX()
and ASSERT_XX() macros. Therefore we only do it where it’s most needed
(otherwise we make the implementation of googletest harder to maintain and more
error-prone than necessary).

The EXPECT_EQ() macro takes the expected value as its first argument and the
actual value as the second. It’s reasonable that someone wants to write
EXPECT_EQ(NULL, some_expression), and this indeed was requested several times.
Therefore we implemented it.

The need for EXPECT_NE(NULL, ptr) isn’t nearly as strong. When the assertion
fails, you already know that ptr must be NULL, so it doesn’t add any
information to print ptr in this case. That means EXPECT_TRUE(ptr != NULL)
works just as well.

If we were to support EXPECT_NE(NULL, ptr), for consistency we’ll have to
support EXPECT_NE(ptr, NULL) as well, as unlike EXPECT_EQ, we don’t have a
convention on the order of the two arguments for EXPECT_NE. This means using
the template meta programming tricks twice in the implementation, making it even
harder to understand and maintain. We believe the benefit doesn’t justify the
cost.

Finally, with the growth of the gMock matcher library, we are encouraging people
to use the unified EXPECT_THAT(value, matcher) syntax more often in tests. One
significant advantage of the matcher approach is that matchers can be easily
combined to form new matchers, while the EXPECT_NE, etc, macros cannot be
easily combined. Therefore we want to invest more in the matchers than in the
EXPECT_XX() macros.

I need to test that different implementations of an interface satisfy some common requirements. Should I use typed tests or value-parameterized tests?

For testing various implementations of the same interface, either typed tests or
value-parameterized tests can get it done. It’s really up to you the user to
decide which is more convenient for you, depending on your particular case. Some
rough guidelines:

	Typed tests can be easier to write if instances of the different
implementations can be created the same way, modulo the type. For example,
if all these implementations have a public default constructor (such that
you can write new TypeParam), or if their factory functions have the same
form (e.g. CreateInstance<TypeParam>()).

	Value-parameterized tests can be easier to write if you need different code
patterns to create different implementations’ instances, e.g. new Foo vs
new Bar(5). To accommodate for the differences, you can write factory
function wrappers and pass these function pointers to the tests as their
parameters.

	When a typed test fails, the output includes the name of the type, which can
help you quickly identify which implementation is wrong. Value-parameterized
tests cannot do this, so there you’ll have to look at the iteration number
to know which implementation the failure is from, which is less direct.

	If you make a mistake writing a typed test, the compiler errors can be
harder to digest, as the code is templatized.

	When using typed tests, you need to make sure you are testing against the
interface type, not the concrete types (in other words, you want to make
sure implicit_cast<MyInterface*>(my_concrete_impl) works, not just that
my_concrete_impl works). It’s less likely to make mistakes in this area
when using value-parameterized tests.

I hope I didn’t confuse you more. :-) If you don’t mind, I’d suggest you to give
both approaches a try. Practice is a much better way to grasp the subtle
differences between the two tools. Once you have some concrete experience, you
can much more easily decide which one to use the next time.

My death tests became very slow - what happened?

In August 2008 we had to switch the default death test style from fast to
threadsafe, as the former is no longer safe now that threaded logging is the
default. This caused many death tests to slow down. Unfortunately this change
was necessary.

Please read Fixing Failing Death Tests for what you can
do.

I got some run-time errors about invalid proto descriptors when using ProtocolMessageEquals. Help!

Note: ProtocolMessageEquals and ProtocolMessageEquiv are deprecated
now. Please use EqualsProto, etc instead.

ProtocolMessageEquals and ProtocolMessageEquiv were redefined recently and
are now less tolerant on invalid protocol buffer definitions. In particular, if
you have a foo.proto that doesn’t fully qualify the type of a protocol message
it references (e.g. message<Bar> where it should be message<blah.Bar>), you
will now get run-time errors like:

... descriptor.cc:...] Invalid proto descriptor for file "path/to/foo.proto":
... descriptor.cc:...] blah.MyMessage.my_field: ".Bar" is not defined.

If you see this, your .proto file is broken and needs to be fixed by making
the types fully qualified. The new definition of ProtocolMessageEquals and
ProtocolMessageEquiv just happen to reveal your bug.

My death test modifies some state, but the change seems lost after the death test finishes. Why?

Death tests (EXPECT_DEATH, etc) are executed in a sub-process s.t. the
expected crash won’t kill the test program (i.e. the parent process). As a
result, any in-memory side effects they incur are observable in their respective
sub-processes, but not in the parent process. You can think of them as running
in a parallel universe, more or less.

In particular, if you use gMock and the death test statement
invokes some mock methods, the parent process will think the calls have never
occurred. Therefore, you may want to move your EXPECT_CALL statements inside
the EXPECT_DEATH macro.

EXPECT_EQ(htonl(blah), blah_blah) generates weird compiler errors in opt mode. Is this a googletest bug?

Actually, the bug is in htonl().

According to 'man htonl', htonl() is a function, which means it’s valid to
use htonl as a function pointer. However, in opt mode htonl() is defined as
a macro, which breaks this usage.

Worse, the macro definition of htonl() uses a gcc extension and is not
standard C++. That hacky implementation has some ad hoc limitations. In
particular, it prevents you from writing Foo<sizeof(htonl(x))>(), where Foo
is a template that has an integral argument.

The implementation of EXPECT_EQ(a, b) uses sizeof(... a ...) inside a
template argument, and thus doesn’t compile in opt mode when a contains a call
to htonl(). It is difficult to make EXPECT_EQ bypass the htonl() bug, as
the solution must work with different compilers on various platforms.

htonl() has some other problems as described in //util/endian/endian.h,
which defines ghtonl() to replace it. ghtonl() does the same thing htonl()
does, only without its problems. We suggest you to use ghtonl() instead of
htonl(), both in your tests and production code.

//util/endian/endian.h also defines ghtons(), which solves similar problems
in htons().

Don’t forget to add //util/endian to the list of dependencies in the BUILD
file wherever ghtonl() and ghtons() are used. The library consists of a
single header file and will not bloat your binary.

The compiler complains about “undefined references” to some static const member variables, but I did define them in the class body. What’s wrong?

If your class has a static data member:

// foo.h
class Foo {
 ...
 static const int kBar = 100;
};

You also need to define it outside of the class body in foo.cc:

const int Foo::kBar; // No initializer here.

Otherwise your code is invalid C++, and may break in unexpected ways. In
particular, using it in googletest comparison assertions (EXPECT_EQ, etc) will
generate an “undefined reference” linker error. The fact that “it used to work”
doesn’t mean it’s valid. It just means that you were lucky. :-)

Can I derive a test fixture from another?

Yes.

Each test fixture has a corresponding and same named test case. This means only
one test case can use a particular fixture. Sometimes, however, multiple test
cases may want to use the same or slightly different fixtures. For example, you
may want to make sure that all of a GUI library’s test cases don’t leak
important system resources like fonts and brushes.

In googletest, you share a fixture among test cases by putting the shared logic
in a base test fixture, then deriving from that base a separate fixture for each
test case that wants to use this common logic. You then use TEST_F() to write
tests using each derived fixture.

Typically, your code looks like this:

// Defines a base test fixture.
class BaseTest : public ::testing::Test {
 protected:
 ...
};

// Derives a fixture FooTest from BaseTest.
class FooTest : public BaseTest {
 protected:
 void SetUp() override {
 BaseTest::SetUp(); // Sets up the base fixture first.
 ... additional set-up work ...
 }

 void TearDown() override {
 ... clean-up work for FooTest ...
 BaseTest::TearDown(); // Remember to tear down the base fixture
 // after cleaning up FooTest!
 }

 ... functions and variables for FooTest ...
};

// Tests that use the fixture FooTest.
TEST_F(FooTest, Bar) { ... }
TEST_F(FooTest, Baz) { ... }

... additional fixtures derived from BaseTest ...

If necessary, you can continue to derive test fixtures from a derived fixture.
googletest has no limit on how deep the hierarchy can be.

For a complete example using derived test fixtures, see googletest
sample [https://github.com/google/googletest/blob/master/googletest/samples/sample5_unittest.cc]

My compiler complains “void value not ignored as it ought to be.” What does this mean?

You’re probably using an ASSERT_*() in a function that doesn’t return void.
ASSERT_*() can only be used in void functions, due to exceptions being
disabled by our build system. Please see more details
here.

My death test hangs (or seg-faults). How do I fix it?

In googletest, death tests are run in a child process and the way they work is
delicate. To write death tests you really need to understand how they work.
Please make sure you have read this.

In particular, death tests don’t like having multiple threads in the parent
process. So the first thing you can try is to eliminate creating threads outside
of EXPECT_DEATH(). For example, you may want to use mocks
or fake objects instead of real ones in your tests.

Sometimes this is impossible as some library you must use may be creating
threads before main() is even reached. In this case, you can try to minimize
the chance of conflicts by either moving as many activities as possible inside
EXPECT_DEATH() (in the extreme case, you want to move everything inside), or
leaving as few things as possible in it. Also, you can try to set the death test
style to "threadsafe", which is safer but slower, and see if it helps.

If you go with thread-safe death tests, remember that they rerun the test
program from the beginning in the child process. Therefore make sure your
program can run side-by-side with itself and is deterministic.

In the end, this boils down to good concurrent programming. You have to make
sure that there is no race conditions or dead locks in your program. No silver
bullet - sorry!

Should I use the constructor/destructor of the test fixture or SetUp()/TearDown()?

The first thing to remember is that googletest does not reuse the same test
fixture object across multiple tests. For each TEST_F, googletest will create
a fresh test fixture object, immediately call SetUp(), run the test body,
call TearDown(), and then delete the test fixture object.

When you need to write per-test set-up and tear-down logic, you have the choice
between using the test fixture constructor/destructor or SetUp()/TearDown().
The former is usually preferred, as it has the following benefits:

	By initializing a member variable in the constructor, we have the option to
make it const, which helps prevent accidental changes to its value and
makes the tests more obviously correct.

	In case we need to subclass the test fixture class, the subclass’
constructor is guaranteed to call the base class’ constructor first, and
the subclass’ destructor is guaranteed to call the base class’ destructor
afterward. With SetUp()/TearDown(), a subclass may make the mistake of
forgetting to call the base class’ SetUp()/TearDown() or call them at the
wrong time.

You may still want to use SetUp()/TearDown() in the following rare cases:

	In the body of a constructor (or destructor), it’s not possible to use the
ASSERT_xx macros. Therefore, if the set-up operation could cause a fatal
test failure that should prevent the test from running, it’s necessary to
use a CHECK macro or to use SetUp() instead of a constructor.

	If the tear-down operation could throw an exception, you must use
TearDown() as opposed to the destructor, as throwing in a destructor leads
to undefined behavior and usually will kill your program right away. Note
that many standard libraries (like STL) may throw when exceptions are
enabled in the compiler. Therefore you should prefer TearDown() if you
want to write portable tests that work with or without exceptions.

	The googletest team is considering making the assertion macros throw on
platforms where exceptions are enabled (e.g. Windows, Mac OS, and Linux
client-side), which will eliminate the need for the user to propagate
failures from a subroutine to its caller. Therefore, you shouldn’t use
googletest assertions in a destructor if your code could run on such a
platform.

	In a constructor or destructor, you cannot make a virtual function call on
this object. (You can call a method declared as virtual, but it will be
statically bound.) Therefore, if you need to call a method that will be
overridden in a derived class, you have to use SetUp()/TearDown().

The compiler complains “no matching function to call” when I use ASSERT_PRED*. How do I fix it?

If the predicate function you use in ASSERT_PRED* or EXPECT_PRED* is
overloaded or a template, the compiler will have trouble figuring out which
overloaded version it should use. ASSERT_PRED_FORMAT* and
EXPECT_PRED_FORMAT* don’t have this problem.

If you see this error, you might want to switch to
(ASSERT|EXPECT)_PRED_FORMAT*, which will also give you a better failure
message. If, however, that is not an option, you can resolve the problem by
explicitly telling the compiler which version to pick.

For example, suppose you have

bool IsPositive(int n) {
 return n > 0;
}

bool IsPositive(double x) {
 return x > 0;
}

you will get a compiler error if you write

EXPECT_PRED1(IsPositive, 5);

However, this will work:

EXPECT_PRED1(static_cast<bool (*)(int)>(IsPositive), 5);

(The stuff inside the angled brackets for the static_cast operator is the type
of the function pointer for the int-version of IsPositive().)

As another example, when you have a template function

template <typename T>
bool IsNegative(T x) {
 return x < 0;
}

you can use it in a predicate assertion like this:

ASSERT_PRED1(IsNegative<int>, -5);

Things are more interesting if your template has more than one parameters. The
following won’t compile:

ASSERT_PRED2(GreaterThan<int, int>, 5, 0);

as the C++ pre-processor thinks you are giving ASSERT_PRED2 4 arguments, which
is one more than expected. The workaround is to wrap the predicate function in
parentheses:

ASSERT_PRED2((GreaterThan<int, int>), 5, 0);

My compiler complains about “ignoring return value” when I call RUN_ALL_TESTS(). Why?

Some people had been ignoring the return value of RUN_ALL_TESTS(). That is,
instead of

 return RUN_ALL_TESTS();

they write

 RUN_ALL_TESTS();

This is wrong and dangerous. The testing services needs to see the return
value of RUN_ALL_TESTS() in order to determine if a test has passed. If your
main() function ignores it, your test will be considered successful even if it
has a googletest assertion failure. Very bad.

We have decided to fix this (thanks to Michael Chastain for the idea). Now, your
code will no longer be able to ignore RUN_ALL_TESTS() when compiled with
gcc. If you do so, you’ll get a compiler error.

If you see the compiler complaining about you ignoring the return value of
RUN_ALL_TESTS(), the fix is simple: just make sure its value is used as the
return value of main().

But how could we introduce a change that breaks existing tests? Well, in this
case, the code was already broken in the first place, so we didn’t break it. :-)

My compiler complains that a constructor (or destructor) cannot return a value. What’s going on?

Due to a peculiarity of C++, in order to support the syntax for streaming
messages to an ASSERT_*, e.g.

 ASSERT_EQ(1, Foo()) << "blah blah" << foo;

we had to give up using ASSERT* and FAIL* (but not EXPECT* and
ADD_FAILURE*) in constructors and destructors. The workaround is to move the
content of your constructor/destructor to a private void member function, or
switch to EXPECT_*() if that works. This
section in the user’s guide explains it.

My SetUp() function is not called. Why?

C++ is case-sensitive. Did you spell it as Setup()?

Similarly, sometimes people spell SetUpTestCase() as SetupTestCase() and
wonder why it’s never called.

How do I jump to the line of a failure in Emacs directly?

googletest’s failure message format is understood by Emacs and many other IDEs,
like acme and XCode. If a googletest message is in a compilation buffer in
Emacs, then it’s clickable.

I have several test cases which share the same test fixture logic, do I have to define a new test fixture class for each of them? This seems pretty tedious.

You don’t have to. Instead of

class FooTest : public BaseTest {};

TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }

class BarTest : public BaseTest {};

TEST_F(BarTest, Abc) { ... }
TEST_F(BarTest, Def) { ... }

you can simply typedef the test fixtures:

typedef BaseTest FooTest;

TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }

typedef BaseTest BarTest;

TEST_F(BarTest, Abc) { ... }
TEST_F(BarTest, Def) { ... }

googletest output is buried in a whole bunch of LOG messages. What do I do?

The googletest output is meant to be a concise and human-friendly report. If
your test generates textual output itself, it will mix with the googletest
output, making it hard to read. However, there is an easy solution to this
problem.

Since LOG messages go to stderr, we decided to let googletest output go to
stdout. This way, you can easily separate the two using redirection. For
example:

$./my_test > gtest_output.txt

Why should I prefer test fixtures over global variables?

There are several good reasons:

	It’s likely your test needs to change the states of its global variables.
This makes it difficult to keep side effects from escaping one test and
contaminating others, making debugging difficult. By using fixtures, each
test has a fresh set of variables that’s different (but with the same
names). Thus, tests are kept independent of each other.

	Global variables pollute the global namespace.

	Test fixtures can be reused via subclassing, which cannot be done easily
with global variables. This is useful if many test cases have something in
common.

What can the statement argument in ASSERT_DEATH() be?

ASSERT_DEATH(*statement*, *regex*) (or any death assertion macro) can be used
wherever *statement* is valid. So basically *statement* can be any C++
statement that makes sense in the current context. In particular, it can
reference global and/or local variables, and can be:

	a simple function call (often the case),

	a complex expression, or

	a compound statement.

Some examples are shown here:

// A death test can be a simple function call.
TEST(MyDeathTest, FunctionCall) {
 ASSERT_DEATH(Xyz(5), "Xyz failed");
}

// Or a complex expression that references variables and functions.
TEST(MyDeathTest, ComplexExpression) {
 const bool c = Condition();
 ASSERT_DEATH((c ? Func1(0) : object2.Method("test")),
 "(Func1|Method) failed");
}

// Death assertions can be used any where in a function. In
// particular, they can be inside a loop.
TEST(MyDeathTest, InsideLoop) {
 // Verifies that Foo(0), Foo(1), ..., and Foo(4) all die.
 for (int i = 0; i < 5; i++) {
 EXPECT_DEATH_M(Foo(i), "Foo has \\d+ errors",
 ::testing::Message() << "where i is " << i);
 }
}

// A death assertion can contain a compound statement.
TEST(MyDeathTest, CompoundStatement) {
 // Verifies that at lease one of Bar(0), Bar(1), ..., and
 // Bar(4) dies.
 ASSERT_DEATH({
 for (int i = 0; i < 5; i++) {
 Bar(i);
 }
 },
 "Bar has \\d+ errors");
}

gtest-death-test_test.cc contains more examples if you are interested.

I have a fixture class FooTest, but TEST_F(FooTest, Bar) gives me error "no matching function for call to `FooTest::FooTest()'". Why?

Googletest needs to be able to create objects of your test fixture class, so it
must have a default constructor. Normally the compiler will define one for you.
However, there are cases where you have to define your own:

	If you explicitly declare a non-default constructor for class FooTest
(DISALLOW_EVIL_CONSTRUCTORS() does this), then you need to define a
default constructor, even if it would be empty.

	If FooTest has a const non-static data member, then you have to define the
default constructor and initialize the const member in the initializer
list of the constructor. (Early versions of gcc doesn’t force you to
initialize the const member. It’s a bug that has been fixed in gcc 4.)

Why does ASSERT_DEATH complain about previous threads that were already joined?

With the Linux pthread library, there is no turning back once you cross the line
from single thread to multiple threads. The first time you create a thread, a
manager thread is created in addition, so you get 3, not 2, threads. Later when
the thread you create joins the main thread, the thread count decrements by 1,
but the manager thread will never be killed, so you still have 2 threads, which
means you cannot safely run a death test.

The new NPTL thread library doesn’t suffer from this problem, as it doesn’t
create a manager thread. However, if you don’t control which machine your test
runs on, you shouldn’t depend on this.

Why does googletest require the entire test case, instead of individual tests, to be named *DeathTest when it uses ASSERT_DEATH?

googletest does not interleave tests from different test cases. That is, it runs
all tests in one test case first, and then runs all tests in the next test case,
and so on. googletest does this because it needs to set up a test case before
the first test in it is run, and tear it down afterwords. Splitting up the test
case would require multiple set-up and tear-down processes, which is inefficient
and makes the semantics unclean.

If we were to determine the order of tests based on test name instead of test
case name, then we would have a problem with the following situation:

TEST_F(FooTest, AbcDeathTest) { ... }
TEST_F(FooTest, Uvw) { ... }

TEST_F(BarTest, DefDeathTest) { ... }
TEST_F(BarTest, Xyz) { ... }

Since FooTest.AbcDeathTest needs to run before BarTest.Xyz, and we don’t
interleave tests from different test cases, we need to run all tests in the
FooTest case before running any test in the BarTest case. This contradicts
with the requirement to run BarTest.DefDeathTest before FooTest.Uvw.

But I don’t like calling my entire test case *DeathTest when it contains both death tests and non-death tests. What do I do?

You don’t have to, but if you like, you may split up the test case into
FooTest and FooDeathTest, where the names make it clear that they are
related:

class FooTest : public ::testing::Test { ... };

TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }

using FooDeathTest = FooTest;

TEST_F(FooDeathTest, Uvw) { ... EXPECT_DEATH(...) ... }
TEST_F(FooDeathTest, Xyz) { ... ASSERT_DEATH(...) ... }

googletest prints the LOG messages in a death test’s child process only when the test fails. How can I see the LOG messages when the death test succeeds?

Printing the LOG messages generated by the statement inside EXPECT_DEATH()
makes it harder to search for real problems in the parent’s log. Therefore,
googletest only prints them when the death test has failed.

If you really need to see such LOG messages, a workaround is to temporarily
break the death test (e.g. by changing the regex pattern it is expected to
match). Admittedly, this is a hack. We’ll consider a more permanent solution
after the fork-and-exec-style death tests are implemented.

The compiler complains about “no match for ‘operator<<’” when I use an assertion. What gives?

If you use a user-defined type FooType in an assertion, you must make sure
there is an std::ostream& operator<<(std::ostream&, const FooType&) function
defined such that we can print a value of FooType.

In addition, if FooType is declared in a name space, the << operator also
needs to be defined in the same name space. See go/totw/49 for details.

How do I suppress the memory leak messages on Windows?

Since the statically initialized googletest singleton requires allocations on
the heap, the Visual C++ memory leak detector will report memory leaks at the
end of the program run. The easiest way to avoid this is to use the
_CrtMemCheckpoint and _CrtMemDumpAllObjectsSince calls to not report any
statically initialized heap objects. See MSDN for more details and additional
heap check/debug routines.

How can my code detect if it is running in a test?

If you write code that sniffs whether it’s running in a test and does different
things accordingly, you are leaking test-only logic into production code and
there is no easy way to ensure that the test-only code paths aren’t run by
mistake in production. Such cleverness also leads to
Heisenbugs [https://en.wikipedia.org/wiki/Heisenbug]. Therefore we strongly
advise against the practice, and googletest doesn’t provide a way to do it.

In general, the recommended way to cause the code to behave differently under
test is Dependency Injection [https://en.wikipedia.org/wiki/Dependency_injection]. You can inject
different functionality from the test and from the production code. Since your
production code doesn’t link in the for-test logic at all (the
testonly [https://docs.bazel.build/versions/master/be/common-definitions.html#common.testonly]
attribute for BUILD targets helps to ensure that), there is no danger in
accidentally running it.

However, if you really, really, really have no choice, and if you follow
the rule of ending your test program names with _test, you can use the
horrible hack of sniffing your executable name (argv[0] in main()) to know
whether the code is under test.

How do I temporarily disable a test?

If you have a broken test that you cannot fix right away, you can add the
DISABLED_ prefix to its name. This will exclude it from execution. This is
better than commenting out the code or using #if 0, as disabled tests are still
compiled (and thus won’t rot).

To include disabled tests in test execution, just invoke the test program with
the –gtest_also_run_disabled_tests flag.

Is it OK if I have two separate TEST(Foo, Bar) test methods defined in different namespaces?

Yes.

The rule is all test methods in the same test case must use the same fixture
class. This means that the following is allowed because both tests use the
same fixture class (::testing::Test).

namespace foo {
TEST(CoolTest, DoSomething) {
 SUCCEED();
}
} // namespace foo

namespace bar {
TEST(CoolTest, DoSomething) {
 SUCCEED();
}
} // namespace bar

However, the following code is not allowed and will produce a runtime error
from googletest because the test methods are using different test fixture
classes with the same test case name.

namespace foo {
class CoolTest : public ::testing::Test {}; // Fixture foo::CoolTest
TEST_F(CoolTest, DoSomething) {
 SUCCEED();
}
} // namespace foo

namespace bar {
class CoolTest : public ::testing::Test {}; // Fixture: bar::CoolTest
TEST_F(CoolTest, DoSomething) {
 SUCCEED();
}
} // namespace bar

 Googletest Primer

Googletest Primer

Introduction: Why googletest?

googletest helps you write better C++ tests.

googletest is a testing framework developed by the Testing
Technology team with Google’s specific
requirements and constraints in mind. No matter whether you work on Linux,
Windows, or a Mac, if you write C++ code, googletest can help you. And it
supports any kind of tests, not just unit tests.

So what makes a good test, and how does googletest fit in? We believe:

	Tests should be independent and repeatable. It’s a pain to debug a test
that succeeds or fails as a result of other tests. googletest isolates the
tests by running each of them on a different object. When a test fails,
googletest allows you to run it in isolation for quick debugging.

	Tests should be well organized and reflect the structure of the tested
code. googletest groups related tests into test cases that can share data
and subroutines. This common pattern is easy to recognize and makes tests
easy to maintain. Such consistency is especially helpful when people switch
projects and start to work on a new code base.

	Tests should be portable and reusable. Google has a lot of code that is
platform-neutral, its tests should also be platform-neutral. googletest
works on different OSes, with different compilers (gcc, icc, and MSVC), with
or without exceptions, so googletest tests can easily work with a variety of
configurations.

	When tests fail, they should provide as much information about the problem
as possible. googletest doesn’t stop at the first test failure. Instead, it
only stops the current test and continues with the next. You can also set up
tests that report non-fatal failures after which the current test continues.
Thus, you can detect and fix multiple bugs in a single run-edit-compile
cycle.

	The testing framework should liberate test writers from housekeeping chores
and let them focus on the test content. googletest automatically keeps
track of all tests defined, and doesn’t require the user to enumerate them
in order to run them.

	Tests should be fast. With googletest, you can reuse shared resources
across tests and pay for the set-up/tear-down only once, without making
tests depend on each other.

Since googletest is based on the popular xUnit architecture, you’ll feel right
at home if you’ve used JUnit or PyUnit before. If not, it will take you about 10
minutes to learn the basics and get started. So let’s go!

Beware of the nomenclature

Note: There might be some confusion of idea due to different
definitions of the terms Test, Test Case and Test Suite, so beware
of misunderstanding these.

Historically, googletest started to use the term Test Case for grouping
related tests, whereas current publications including the International Software
Testing Qualifications Board (ISTQB [http://www.istqb.org/]) and various
textbooks on Software Quality use the term Test
Suite [http://glossary.istqb.org/search/test%20suite] for this.

The related term Test, as it is used in the googletest, is corresponding to
the term Test Case [http://glossary.istqb.org/search/test%20case] of ISTQB
and others.

The term Test is commonly of broad enough sense, including ISTQB’s
definition of Test Case, so it’s not much of a problem here. But the
term Test Case as used in Google Test is of contradictory sense and thus confusing.

Unfortunately replacing the term Test Case by Test Suite throughout the
googletest is not easy without breaking dependent projects, as TestCase is
part of the public API at various places.

So for the time being, please be aware of the different definitions of
the terms:

Meaning | googletest Term | ISTQB [http://www.istqb.org/] Term
:———————————————————————————– | :——————————————————————————————————— | :———————————-
Exercise a particular program path with specific input values and verify the results | TEST() | Test Case [http://glossary.istqb.org/search/test%20case]
A set of several tests related to one component | TestCase | TestSuite [http://glossary.istqb.org/search/test%20suite]

Basic Concepts

When using googletest, you start by writing assertions, which are statements
that check whether a condition is true. An assertion’s result can be success,
nonfatal failure, or fatal failure. If a fatal failure occurs, it aborts the
current function; otherwise the program continues normally.

Tests use assertions to verify the tested code’s behavior. If a test crashes
or has a failed assertion, then it fails; otherwise it succeeds.

A test case contains one or many tests. You should group your tests into test
cases that reflect the structure of the tested code. When multiple tests in a
test case need to share common objects and subroutines, you can put them into a
test fixture class.

A test program can contain multiple test cases.

We’ll now explain how to write a test program, starting at the individual
assertion level and building up to tests and test cases.

Assertions

googletest assertions are macros that resemble function calls. You test a class
or function by making assertions about its behavior. When an assertion fails,
googletest prints the assertion’s source file and line number location, along
with a failure message. You may also supply a custom failure message which will
be appended to googletest’s message.

The assertions come in pairs that test the same thing but have different effects
on the current function. ASSERT_* versions generate fatal failures when they
fail, and abort the current function. EXPECT_* versions generate nonfatal
failures, which don’t abort the current function. Usually EXPECT_* are
preferred, as they allow more than one failure to be reported in a test.
However, you should use ASSERT_* if it doesn’t make sense to continue when the
assertion in question fails.

Since a failed ASSERT_* returns from the current function immediately,
possibly skipping clean-up code that comes after it, it may cause a space leak.
Depending on the nature of the leak, it may or may not be worth fixing - so keep
this in mind if you get a heap checker error in addition to assertion errors.

To provide a custom failure message, simply stream it into the macro using the
<< operator, or a sequence of such operators. An example:

ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal length";

for (int i = 0; i < x.size(); ++i) {
 EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i;
}

Anything that can be streamed to an ostream can be streamed to an assertion
macro–in particular, C strings and string objects. If a wide string
(wchar_t*, TCHAR* in UNICODE mode on Windows, or std::wstring) is
streamed to an assertion, it will be translated to UTF-8 when printed.

Basic Assertions

These assertions do basic true/false condition testing.

Fatal assertion | Nonfatal assertion | Verifies
————————– | ————————– | ——————–
ASSERT_TRUE(condition); | EXPECT_TRUE(condition); | condition is true
ASSERT_FALSE(condition); | EXPECT_FALSE(condition); | condition is false

Remember, when they fail, ASSERT_* yields a fatal failure and returns from the
current function, while EXPECT_* yields a nonfatal failure, allowing the
function to continue running. In either case, an assertion failure means its
containing test fails.

Availability: Linux, Windows, Mac.

Binary Comparison

This section describes assertions that compare two values.

Fatal assertion | Nonfatal assertion | Verifies
———————— | ———————— | ————–
ASSERT_EQ(val1, val2); | EXPECT_EQ(val1, val2); | val1 == val2
ASSERT_NE(val1, val2); | EXPECT_NE(val1, val2); | val1 != val2
ASSERT_LT(val1, val2); | EXPECT_LT(val1, val2); | val1 < val2
ASSERT_LE(val1, val2); | EXPECT_LE(val1, val2); | val1 <= val2
ASSERT_GT(val1, val2); | EXPECT_GT(val1, val2); | val1 > val2
ASSERT_GE(val1, val2); | EXPECT_GE(val1, val2); | val1 >= val2

Value arguments must be comparable by the assertion’s comparison operator or
you’ll get a compiler error. We used to require the arguments to support the
<< operator for streaming to an ostream, but it’s no longer necessary. If
<< is supported, it will be called to print the arguments when the assertion
fails; otherwise googletest will attempt to print them in the best way it can.
For more details and how to customize the printing of the arguments, see
gMock recipe.).

These assertions can work with a user-defined type, but only if you define the
corresponding comparison operator (e.g. ==, <, etc). Since this is
discouraged by the Google C++ Style
Guide [https://google.github.io/styleguide/cppguide.html#Operator_Overloading],
you may need to use ASSERT_TRUE() or EXPECT_TRUE() to assert the equality of
two objects of a user-defined type.

However, when possible, ASSERT_EQ(actual, expected) is preferred to
ASSERT_TRUE(actual == expected), since it tells you actual and expected’s
values on failure.

Arguments are always evaluated exactly once. Therefore, it’s OK for the
arguments to have side effects. However, as with any ordinary C/C++ function,
the arguments’ evaluation order is undefined (i.e. the compiler is free to
choose any order) and your code should not depend on any particular argument
evaluation order.

ASSERT_EQ() does pointer equality on pointers. If used on two C strings, it
tests if they are in the same memory location, not if they have the same value.
Therefore, if you want to compare C strings (e.g. const char*) by value, use
ASSERT_STREQ(), which will be described later on. In particular, to assert
that a C string is NULL, use ASSERT_STREQ(c_string, NULL). Consider use
ASSERT_EQ(c_string, nullptr) if c++11 is supported. To compare two string
objects, you should use ASSERT_EQ.

When doing pointer comparisons use *_EQ(ptr, nullptr) and *_NE(ptr, nullptr)
instead of *_EQ(ptr, NULL) and *_NE(ptr, NULL). This is because nullptr is
typed while NULL is not. See FAQ
for more details.

If you’re working with floating point numbers, you may want to use the floating
point variations of some of these macros in order to avoid problems caused by
rounding. See Advanced googletest Topics for details.

Macros in this section work with both narrow and wide string objects (string
and wstring).

Availability: Linux, Windows, Mac.

Historical note: Before February 2016 *_EQ had a convention of calling it
as ASSERT_EQ(expected, actual), so lots of existing code uses this order. Now
*_EQ treats both parameters in the same way.

String Comparison

The assertions in this group compare two C strings. If you want to compare
two string objects, use EXPECT_EQ, EXPECT_NE, and etc instead.

Fatal assertion	Nonfatal assertion	Verifies
——————————-	——————————-	——————————————————–
ASSERT_STREQ(str1, str2);	EXPECT_STREQ(str1, str2);	the two C strings have the same content
ASSERT_STRNE(str1, str2);	EXPECT_STRNE(str1, str2);	the two C strings have different contents
ASSERT_STRCASEEQ(str1, str2);	EXPECT_STRCASEEQ(str1, str2);	the two C strings have the same content, ignoring case
ASSERT_STRCASENE(str1, str2);	EXPECT_STRCASENE(str1, str2);	the two C strings have different contents, ignoring case

Note that “CASE” in an assertion name means that case is ignored. A NULL
pointer and an empty string are considered different.

STREQ and *STRNE* also accept wide C strings (wchar_t*). If a comparison
of two wide strings fails, their values will be printed as UTF-8 narrow strings.

Availability: Linux, Windows, Mac.

See also: For more string comparison tricks (substring, prefix, suffix, and
regular expression matching, for example), see
this [https://github.com/google/googletest/blob/master/googletest/docs/advanced.md]
in the Advanced googletest Guide.

Simple Tests

To create a test:

	Use the TEST() macro to define and name a test function, These are
ordinary C++ functions that don’t return a value.

	In this function, along with any valid C++ statements you want to include,
use the various googletest assertions to check values.

	The test’s result is determined by the assertions; if any assertion in the
test fails (either fatally or non-fatally), or if the test crashes, the
entire test fails. Otherwise, it succeeds.

TEST(TestCaseName, TestName) {
 ... test body ...
}

TEST() arguments go from general to specific. The first argument is the name
of the test case, and the second argument is the test’s name within the test
case. Both names must be valid C++ identifiers, and they should not contain
underscore (_). A test’s full name consists of its containing test case and
its individual name. Tests from different test cases can have the same
individual name.

For example, let’s take a simple integer function:

int Factorial(int n); // Returns the factorial of n

A test case for this function might look like:

// Tests factorial of 0.
TEST(FactorialTest, HandlesZeroInput) {
 EXPECT_EQ(Factorial(0), 1);
}

// Tests factorial of positive numbers.
TEST(FactorialTest, HandlesPositiveInput) {
 EXPECT_EQ(Factorial(1), 1);
 EXPECT_EQ(Factorial(2), 2);
 EXPECT_EQ(Factorial(3), 6);
 EXPECT_EQ(Factorial(8), 40320);
}

googletest groups the test results by test cases, so logically-related tests
should be in the same test case; in other words, the first argument to their
TEST() should be the same. In the above example, we have two tests,
HandlesZeroInput and HandlesPositiveInput, that belong to the same test case
FactorialTest.

When naming your test cases and tests, you should follow the same convention as
for naming functions and
classes [https://google.github.io/styleguide/cppguide.html#Function_Names].

Availability: Linux, Windows, Mac.

Test Fixtures: Using the Same Data Configuration for Multiple Tests

If you find yourself writing two or more tests that operate on similar data, you
can use a test fixture. It allows you to reuse the same configuration of
objects for several different tests.

To create a fixture:

	Derive a class from ::testing::Test . Start its body with protected: as
we’ll want to access fixture members from sub-classes.

	Inside the class, declare any objects you plan to use.

	If necessary, write a default constructor or SetUp() function to prepare
the objects for each test. A common mistake is to spell SetUp() as
Setup() with a small u - Use override in C++11 to make sure you
spelled it correctly

	If necessary, write a destructor or TearDown() function to release any
resources you allocated in SetUp() . To learn when you should use the
constructor/destructor and when you should use SetUp()/TearDown(), read
this FAQ entry.

	If needed, define subroutines for your tests to share.

When using a fixture, use TEST_F() instead of TEST() as it allows you to
access objects and subroutines in the test fixture:

TEST_F(TestCaseName, TestName) {
 ... test body ...
}

Like TEST(), the first argument is the test case name, but for TEST_F() this
must be the name of the test fixture class. You’ve probably guessed: _F is for
fixture.

Unfortunately, the C++ macro system does not allow us to create a single macro
that can handle both types of tests. Using the wrong macro causes a compiler
error.

Also, you must first define a test fixture class before using it in a
TEST_F(), or you’ll get the compiler error “virtual outside class declaration”.

For each test defined with TEST_F() , googletest will create a fresh test
fixture at runtime, immediately initialize it via SetUp() , run the test,
clean up by calling TearDown() , and then delete the test fixture. Note that
different tests in the same test case have different test fixture objects, and
googletest always deletes a test fixture before it creates the next one.
googletest does not reuse the same test fixture for multiple tests. Any
changes one test makes to the fixture do not affect other tests.

As an example, let’s write tests for a FIFO queue class named Queue, which has
the following interface:

template <typename E> // E is the element type.
class Queue {
 public:
 Queue();
 void Enqueue(const E& element);
 E* Dequeue(); // Returns NULL if the queue is empty.
 size_t size() const;
 ...
};

First, define a fixture class. By convention, you should give it the name
FooTest where Foo is the class being tested.

class QueueTest : public ::testing::Test {
 protected:
 void SetUp() override {
 q1_.Enqueue(1);
 q2_.Enqueue(2);
 q2_.Enqueue(3);
 }

 // void TearDown() override {}

 Queue<int> q0_;
 Queue<int> q1_;
 Queue<int> q2_;
};

In this case, TearDown() is not needed since we don’t have to clean up after
each test, other than what’s already done by the destructor.

Now we’ll write tests using TEST_F() and this fixture.

TEST_F(QueueTest, IsEmptyInitially) {
 EXPECT_EQ(q0_.size(), 0);
}

TEST_F(QueueTest, DequeueWorks) {
 int* n = q0_.Dequeue();
 EXPECT_EQ(n, nullptr);

 n = q1_.Dequeue();
 ASSERT_NE(n, nullptr);
 EXPECT_EQ(*n, 1);
 EXPECT_EQ(q1_.size(), 0);
 delete n;

 n = q2_.Dequeue();
 ASSERT_NE(n, nullptr);
 EXPECT_EQ(*n, 2);
 EXPECT_EQ(q2_.size(), 1);
 delete n;
}

The above uses both ASSERT_* and EXPECT_* assertions. The rule of thumb is
to use EXPECT_* when you want the test to continue to reveal more errors after
the assertion failure, and use ASSERT_* when continuing after failure doesn’t
make sense. For example, the second assertion in the Dequeue test is
=ASSERT_NE(nullptr, n)=, as we need to dereference the pointer n later, which
would lead to a segfault when n is NULL.

When these tests run, the following happens:

	googletest constructs a QueueTest object (let’s call it t1).

	t1.SetUp() initializes t1 .

	The first test (IsEmptyInitially) runs on t1 .

	t1.TearDown() cleans up after the test finishes.

	t1 is destructed.

	The above steps are repeated on another QueueTest object, this time
running the DequeueWorks test.

Availability: Linux, Windows, Mac.

Invoking the Tests

TEST() and TEST_F() implicitly register their tests with googletest. So,
unlike with many other C++ testing frameworks, you don’t have to re-list all
your defined tests in order to run them.

After defining your tests, you can run them with RUN_ALL_TESTS() , which
returns 0 if all the tests are successful, or 1 otherwise. Note that
RUN_ALL_TESTS() runs all tests in your link unit – they can be from
different test cases, or even different source files.

When invoked, the RUN_ALL_TESTS() macro:

	Saves the state of all googletest flags

	Creates a test fixture object for the first test.

	Initializes it via SetUp().

	Runs the test on the fixture object.

	Cleans up the fixture via TearDown().

	Deletes the fixture.

	Restores the state of all googletest flags

	Repeats the above steps for the next test, until all tests have run.

If a fatal failure happens the subsequent steps will be skipped.

IMPORTANT: You must not ignore the return value of RUN_ALL_TESTS(), or
you will get a compiler error. The rationale for this design is that the
automated testing service determines whether a test has passed based on its
exit code, not on its stdout/stderr output; thus your main() function must
return the value of RUN_ALL_TESTS().

Also, you should call RUN_ALL_TESTS() only once. Calling it more than
once conflicts with some advanced googletest features (e.g. thread-safe death
tests) and thus is not supported.

Availability: Linux, Windows, Mac.

Writing the main() Function

In google3, the simplest approach is to use the default main() function
provided by linking in "//testing/base/public:gtest_main". If that doesn’t
cover what you need, you should write your own main() function, which should
return the value of RUN_ALL_TESTS(). Link to "//testing/base/public:gunit".
You can start from this boilerplate:

#include "this/package/foo.h"
#include "gtest/gtest.h"

namespace {

// The fixture for testing class Foo.
class FooTest : public ::testing::Test {
 protected:
 // You can remove any or all of the following functions if its body
 // is empty.

 FooTest() {
 // You can do set-up work for each test here.
 }

 ~FooTest() override {
 // You can do clean-up work that doesn't throw exceptions here.
 }

 // If the constructor and destructor are not enough for setting up
 // and cleaning up each test, you can define the following methods:

 void SetUp() override {
 // Code here will be called immediately after the constructor (right
 // before each test).
 }

 void TearDown() override {
 // Code here will be called immediately after each test (right
 // before the destructor).
 }

 // Objects declared here can be used by all tests in the test case for Foo.
};

// Tests that the Foo::Bar() method does Abc.
TEST_F(FooTest, MethodBarDoesAbc) {
 const std::string input_filepath = "this/package/testdata/myinputfile.dat";
 const std::string output_filepath = "this/package/testdata/myoutputfile.dat";
 Foo f;
 EXPECT_EQ(f.Bar(input_filepath, output_filepath), 0);
}

// Tests that Foo does Xyz.
TEST_F(FooTest, DoesXyz) {
 // Exercises the Xyz feature of Foo.
}

} // namespace

int main(int argc, char **argv) {
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

The ::testing::InitGoogleTest() function parses the command line for
googletest flags, and removes all recognized flags. This allows the user to
control a test program’s behavior via various flags, which we’ll cover in
AdvancedGuide. You must call this function before calling
RUN_ALL_TESTS(), or the flags won’t be properly initialized.

On Windows, InitGoogleTest() also works with wide strings, so it can be used
in programs compiled in UNICODE mode as well.

But maybe you think that writing all those main() functions is too much work? We
agree with you completely and that’s why Google Test provides a basic
implementation of main(). If it fits your needs, then just link your test with
gtest_main library and you are good to go.

NOTE: ParseGUnitFlags() is deprecated in favor of InitGoogleTest().

Known Limitations

	Google Test is designed to be thread-safe. The implementation is thread-safe
on systems where the pthreads library is available. It is currently
unsafe to use Google Test assertions from two threads concurrently on
other systems (e.g. Windows). In most tests this is not an issue as usually
the assertions are done in the main thread. If you want to help, you can
volunteer to implement the necessary synchronization primitives in
gtest-port.h for your platform.

 Googletest Samples {#samples}

Googletest Samples {#samples}

If you’re like us, you’d like to look at googletest
samples. [https://github.com/google/googletest/tree/master/googletest/samples]
The sample directory has a number of well-commented samples showing how to use a
variety of googletest features.

	Sample #1 shows the basic steps of using googletest to test C++ functions.

	Sample #2 shows a more complex unit test for a class with multiple member
functions.

	Sample #3 uses a test fixture.

	Sample #4 teaches you how to use googletest and googletest.h together to
get the best of both libraries.

	Sample #5 puts shared testing logic in a base test fixture, and reuses it in
derived fixtures.

	Sample #6 demonstrates type-parameterized tests.

	Sample #7 teaches the basics of value-parameterized tests.

	Sample #8 shows using Combine() in value-parameterized tests.

	Sample #9 shows use of the listener API to modify Google Test’s console
output and the use of its reflection API to inspect test results.

	Sample #10 shows use of the listener API to implement a primitive memory
leak checker.

 Customization Points

Customization Points

The custom directory is an injection point for custom user configurations.

Header gtest.h

The following macros can be defined:

	GTEST_OS_STACK_TRACE_GETTER_ - The name of an implementation of
OsStackTraceGetterInterface.

	GTEST_CUSTOM_TEMPDIR_FUNCTION_ - An override for testing::TempDir(). See
testing::TempDir for semantics and signature.

Header gtest-port.h

The following macros can be defined:

Flag related macros:

	GTEST_FLAG(flag_name)

	GTEST_USE_OWN_FLAGFILE_FLAG_ - Define to 0 when the system provides its
own flagfile flag parsing.

	GTEST_DECLARE_bool_(name)

	GTEST_DECLARE_int32_(name)

	GTEST_DECLARE_string_(name)

	GTEST_DEFINE_bool_(name, default_val, doc)

	GTEST_DEFINE_int32_(name, default_val, doc)

	GTEST_DEFINE_string_(name, default_val, doc)

Logging:

	GTEST_LOG_(severity)

	GTEST_CHECK_(condition)

	Functions LogToStderr() and FlushInfoLog() have to be provided too.

Threading:

	GTEST_HAS_NOTIFICATION_ - Enabled if Notification is already provided.

	GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ - Enabled if Mutex and ThreadLocal
are already provided. Must also provide GTEST_DECLARE_STATIC_MUTEX_(mutex)
and GTEST_DEFINE_STATIC_MUTEX_(mutex)

	GTEST_EXCLUSIVE_LOCK_REQUIRED_(locks)

	GTEST_LOCK_EXCLUDED_(locks)

Underlying library support features

	GTEST_HAS_CXXABI_H_

Exporting API symbols:

	GTEST_API_ - Specifier for exported symbols.

Header gtest-printers.h

	See documentation at gtest/gtest-printers.h for details on how to define a
custom printer.

 Documentation

Documentation

Welcome to the cmake-cache documentation site!

The cmake-cache project is a project intended on making it easy to access CMake cache files, as well as providing interfaces for more complex applications.

The easiest way to get started with the library is with the @ref cmake::cache::Engine class.

The main purpose of the @ref cmake::cache::Engine class is for providing ease of use.

To get started using this class, use the @ref cmake::cache::Engine::Create method.

#include <cmake/cache/engine.hpp>

int main() {

 auto engine = cmake::cache::Engine::Create();

 return 0;
}

This method will created a new engine instance.

Since we’ll have to free this instance later on, it may be easier to use a smart pointer.

#include <cmake/cache/engi